R&S[®]FSW-K72/K73 3GPP FDD Measurements Options User Manual

1173.9305.02 - 06

This manual applies to the following R&S[®]FSW models with firmware version 1.51 and higher:

- R&S[®]FSW8 (1312.8000K08)
- R&S[®]FSW13 (1312.8000K13)
- R&S[®]FSW26 (1312.8000K26)

The following firmware options are described:

- R&S FSW-K72 (1313.1422.02)
- R&S FSW-K73 (1313.1439.02)

The firmware of the instrument makes use of several valuable open source software packages. For information, see the "Open Source Acknowledgement" on the user documentation CD-ROM (included in delivery).

Rohde & Schwarz would like to thank the open source community for their valuable contribution to embedded computing.

© 2012 Rohde & Schwarz GmbH & Co. KG Muehldorfstr. 15, 81671 Munich, Germany Phone: +49 89 41 29 - 0 Fax: +49 89 41 29 12 164

E-mail: info@rohde-schwarz.com

Internet: http://www.rohde-schwarz.com

Printed in Germany – Subject to change – Data without tolerance limits is not binding.

 $\mathsf{R}\&\mathsf{S}^{\circledast}$ is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

Trade names are trademarks of the owners.

The following abbreviations are used throughout this manual: R&S[®]FSW is abbreviated as R&S FSW. "R&S FSW-K72 and R&S FSW-K73" are abbreviated as R&S FSW-K72/K73.

Contents

1	Preface5
1.1	About this Manual5
1.2	Documentation Overview5
1.3	Conventions Used in the Documentation7
2	Welcome to the 3GPP FDD Applications8
2.1	Starting the 3GPP FDD Application8
2.2	Understanding the Display Information9
3	Measurements and Result Display12
3.1	Code Domain Analysis12
3.2	Time Alignment Error Measurements
3.3	RF Measurements32
4	Measurement Basics40
4.1	Channel Detection43
4.2	BTS Channel Types43
4.3	UE Channel Types46
4.4	3GPP FDD BTS Test Models47
4.5	Setup for Base Station Tests49
4.6	3GPP FDD UE Test Models50
4.7	Setup for User Equipment Tests51
4.8	CDA Measurements in MSRA Operating Mode52
5	Configuration54
5.1	Result Display54
5.2	Code Domain Analysis and Time Alignment Error Measurements
5.3	RF Measurements101
6	Analysis106
6.1	Evaluation Range106
6.2	Code Domain Analysis Settings (BTS Measurements)109
6.3	Code Domain Analysis Settings (UE Measurements)111
6.4	Traces112
6.5	Markers114

7	Optimizing and Troubleshooting the Measurement121
7.1	Error Messages121
8	How to Perform Measurements in 3GPP FDD Applications122
9	Measurement Examples126
9.1	Measurement 1: Measuring the Signal Channel Power
9.2	Measurement 2: Determining the Spectrum Emission Mask
9.3	Measurement 3: Measuring the Relative Code Domain Power
9.4	Measurement 4: Triggered Measurement of Relative Code Domain Power133
9.5	Measurement 5: Measuring the Composite EVM135
9.6	Measurement 6: Determining the Peak Code Domain Error136
10	Remote Commands for 3GPP FDD Measurements
10.1	Activating 3GPP FDD Measurements140
10.2	Selecting a Measurement
10.3	Configuring Code Domain Analysis and Time Alignment Error Measurements
10.4	Configuring RF Measurements201
10.5	Configuring the Result Display202
10.6	Starting a Measurement212
10.7	Retrieving Results217
10.8	Analysis241
10.9	Configuring the Application Data Range (MSRA mode only)249
10.10	Querying the Status Registers251
10.11	Commands for Compatibility254
10.12	Programming Examples (R&S FSW-K73)256
	List of Remote Commands (3GPP FDD)264
	Index

1 Preface

1.1 About this Manual

This 3GPP FDD User Manual provides all the information **specific to the 3GPP FDD applications**. All general instrument functions and settings common to all applications and operating modes are described in the main R&S FSW User Manual.

The main focus in this manual is on the measurement results and the tasks required to obtain them. The following topics are included:

- Welcome to the 3GPP FDD Measurements Application
 Introduction to and getting familiar with the application
- Measurements and Result Displays Details on supported measurements and their result types
- Measurement Basics
 Background information on basic terms and principles in the context of the measurement
- Configuration + Analysis
 A concise description of all functions and settings available to configure measurements and analyze results with their corresponding remote control command
- **Optimizing and Troubleshooting the Measurement** Hints and tips on how to handle errors and optimize the test setup
- How to Perform Measurements in 3GPP FDD Applications
 The basic procedure to perform each measurement and step-by-step instructions for
 more complex tasks or alternative methods
- Measurement Examples

Detailed measurement examples to guide you through typical measurement scenarios and allow you to try out the application immediately

- Remote Commands for 3GPP FDD Measurements
 Remote commands required to configure and perform 3GPP FDD measurements in
 a remote environment, sorted by tasks
 (Commands required to set up the environment or to perform common tasks on the
 instrument are provided in the main R&S FSW User Manual)
 Programming examples demonstrate the use of many commands and can usually
 be executed directly for test purposes

 List of remote commands
- Alpahabetical list of all remote commands described in the manual
- Index

1.2 Documentation Overview

The user documentation for the R&S FSW consists of the following parts:

Documentation Overview

- "Getting Started" printed manual
- Online Help system on the instrument
- Documentation CD-ROM with:
 - Getting Started
 - User Manuals for base unit and options
 - Service Manual
 - Release Notes
 - Data sheet and product brochures

Online Help

The Online Help is embedded in the instrument's firmware. It offers quick, context-sensitive access to the complete information needed for operation and programming. Online help is available using the ? icon on the toolbar of the R&S FSW.

Getting Started

This manual is delivered with the instrument in printed form and in PDF format on the CD. It provides the information needed to set up and start working with the instrument. Basic operations and handling are described. Safety information is also included.

The Getting Started manual in various languages is also available for download from the R&S website, on the R&S FSW product page at http://www2.rohde-schwarz.com/prod-uct/FSW.html.

User Manuals

User manuals are provided for the base unit and each additional (software) option.

The user manuals are available in PDF format - in printable form - on the Documentation CD-ROM delivered with the instrument. In the user manuals, all instrument functions are described in detail. Furthermore, they provide a complete description of the remote control commands with programming examples.

The user manual for the base unit provides basic information on operating the R&S FSW in general, and the Spectrum application in particular. Furthermore, the software functions that enhance the basic functionality for various applications are described here. An introduction to remote control is provided, as well as information on maintenance, instrument interfaces and troubleshooting.

In the individual application manuals, the specific instrument functions of the application are described in detail. For additional information on default settings and parameters, refer to the data sheets. Basic information on operating the R&S FSW is not included in the application manuals.

All user manuals are also available for download from the R&S website, on the R&S FSW product page at http://www2.rohde-schwarz.com/product/FSW.html.

Service Manual

This manual is available in PDF format on the CD delivered with the instrument. It describes how to check compliance with rated specifications, instrument function, repair,

troubleshooting and fault elimination. It contains all information required for repairing the R&S FSW by replacing modules.

Release Notes

The release notes describe the installation of the firmware, new and modified functions, eliminated problems, and last minute changes to the documentation. The corresponding firmware version is indicated on the title page of the release notes.

The most recent release notes are also available for download from the R&S website, on the R&S FSW product page at http://www2.rohde-schwarz.com/product/FSW.html > Downloads > Firmware.

1.3 Conventions Used in the Documentation

1.3.1 Typographical Conventions

The following text markers are used throughout this documentation:

Convention Description		
"Graphical user interface ele- ments"	All names of graphical user interface elements on the screen, such as dialog boxes, menus, options, buttons, and softkeys are enclosed by quotation marks.	
KEYS	Key names are written in capital letters.	
File names, commands, program code	File names, commands, coding samples and screen output are distin- guished by their font.	
Input Input to be entered by the user is displayed in italics.		
Links	Links that you can click are displayed in blue font.	
"References"	References to other parts of the documentation are enclosed by quotation marks.	

1.3.2 Conventions for Procedure Descriptions

When describing how to operate the instrument, several alternative methods may be available to perform the same task. In this case, the procedure using the touchscreen is described. Any elements that can be activated by touching can also be clicked using an additionally connected mouse. The alternative procedure using the keys on the instrument or the on-screen keyboard is only described if it deviates from the standard operating procedures.

The term "select" may refer to any of the described methods, i.e. using a finger on the touchscreen, a mouse pointer in the display, or a key on the instrument or on a keyboard.

Starting the 3GPP FDD Application

2 Welcome to the 3GPP FDD Applications

The 3GPP FDD applications add functionality to the R&S FSW to perform code domain analysis or power measurements according to the 3GPP standard (FDD mode). The application firmware is in line with the 3GPP standard (Third Generation Partnership Project) with Release 5. Signals that meet the conditions for channel configuration of test models 1 to 4 according to the 3GPP standard, e.g. WCDMA signals using FDD, can be measured with the 3GPP FDD BTS application. In addition to the code domain measurements specified by the 3GPP standard, the application firmware offers measurements with predefined settings in the frequency domain, e.g. power and ACLR measurements.

R&S FSW-K72 performs **B**ase **T**ransceiver **S**tation (**BTS**) measurements (for downlink signals).

R&S FSW-K73 performs User Equipment (UE) measurements (for uplink signals).

In particular, the 3GPP FDD applications feature:

- Code domain analysis, providing results like code domain power, EVM, peak code domain error etc.
- Time alignment error determination
- Various power measurements
- Spectrum Emission Mask measurements
- Statistical (CCDF) evaluation

This user manual contains a description of the functionality that the application provides, including remote control operation.

All functions not discussed in this manual are the same as in the base unit and are described in the R&S FSW User Manual. The latest version is available for download at the product homepage (http://www2.rohde-schwarz.com/product/FSW.html).

Installation

You can find detailed installation instructions in the R&S FSW Getting Started manual or in the Release Notes.

2.1 Starting the 3GPP FDD Application

The 3GPP FDD measurements require a special application on the R&S FSW.

To activate the 3GPP FDD applications

1. Press the MODE key on the front panel of the R&S FSW.

A dialog box opens that contains all operating modes and applications currently available on your R&S FSW.

2. Select the "3GPP FDD BTS" or "3GPP FDD UE" item.

Understanding the Display Information

The R&S FSW opens a new measurement channel for the 3GPP FDD application.

A Code Domain Analysis measurement is started immediately with the default settings. It can be configured in the 3GPP FDD "Overview" dialog box, which is displayed when you select the "Overview" softkey from any menu (see chapter 5.2.2, "Configuration Overview", on page 58).

Multiple Measurement Channels and Sequencer Function

When you activate an application, a new measurement channel is created which determines the measurement settings for that application. The same application can be activated with different measurement settings by creating several channels for the same application.

Only one measurement can be performed at any time, namely the one in the currently active channel. However, in order to perform the configured measurements consecutively, a Sequencer function is provided.

If activated, the measurements configured in the currently active channels are performed one after the other in the order of the tabs. The currently active measurement is indicated by a symbol in the tab label. The result displays of the individual channels are updated in the tabs (including the "MultiView") as the measurements are performed. Sequential operation itself is independent of the currently *displayed* tab.

For details on the Sequencer function see the R&S FSW User Manual.

2.2 Understanding the Display Information

The following figure shows a measurement diagram during a 3GPP FDD BTS measurement. All different information areas are labeled. They are explained in more detail in the following sections.

(The basic screen elements are identical for 3GPP FDD UE measurements)

Understanding the Display Information

	8	c) k _? ?		10	Amplitude
MultiView Spectrum G 3G FDD 1 Ref Level 0.00 dBm Freq 1.0 GHz Channel	0.256 Power Rel to (срісн			Ref Level
Att 10 dB CPICH SI I Code Domain Pow 2	ot 0 SymbRate 1	5 ksps		3 Cinv	Ref Level Offset
	6)			RF Atten Manual
nriminiini	l II		10		RF Atten Auto
	- 11				
Ch 0 5 2 Result Summary	64 Ch/			Ch 511	I Scale
General Results (Frame 0, CPICH Slot 0)					
Total Power -10.81 dBn	Carrier Freq Error		Chip Rate Error	1.46 ppm	Amplitude
Trigger To Frame 3.878101 m Avg Power Inact Chan -99.97 dt	IQ Offset Composite EVM		IQ Imbalance Pk CDE(15 Ksps)	0.05 % -70.01 dB	• Config
Rho 0.999988			Avg.RCDE(64OAM)	-70.01 dB	6
Channel Results (Ch 0.256)					
Symbol Rate 15 ksym/	Timing Offset	0 Chips	No of Pilot Bits	0	1
	RCDE Symbol EVM	-62.52 dB 0.11 % PK	Modulation Type	QPSK	H
	Symbol EVM	0.07 % ms			Overview
6			Ready	(111111)	1.07.2011
			Ready	(mmm)	10:35:11

1 = Channel bar for firmware and measurement settings

- 2+3 = Window title bar with diagram-specific (trace) information
- 4 = Diagram area
- 5 = Diagram footer with diagram-specific information
- 6 = Instrument status bar with error messages, progress bar and date/time display

MSRA operating mode

In MSRA operating mode, additional tabs and elements are available. A colored background of the screen behind the measurement channel tabs indicates that you are in MSRA operating mode.

For details on the MSRA operating mode see the R&S FSW MSRA User Manual.

Channel bar information

In 3GPP FDD applications, when performing Code Domain Analysis, the R&S FSW screen display deviates from the Spectrum application. For RF measurements, the familiar settings are displayed (see the R&S FSW Getting Started manual).

Table 2-1: Hardware settings displayed in the channel bar in 3GPP FDD applications for Code Domain			
Analysis			

Ref Level Reference level		
Att	Mechanical and electronic RF attenuation	
Freq	Center frequency for the RF signal	
Channel	Channel number (code number and spreading factor)	
CPICH Slot(BTS) / Slot (UE) Slot of the (CPICH) channel		
Power	Power result mode: Absolute Relative to CPICH (BTS application (K72) only) Relative to total power	

Understanding the Display Information

SymbRate	Symbol rate of the current channel
Capture	(UE application (K73) only): basis for analysis (slot or frame)

Window title bar information

For each diagram, the header provides the following information:

1 Code Domain Power		o1 Clrw
1	2	345

Fig. 2-1: Window title bar information in 3GPP applications

- 1 = Window number
- 2 = Window type
- 3 = Trace color
- 4 = Trace number
- 5 = Detector

Diagram footer information

For most graphical evaluations the diagram footer (beneath the diagram) contains scaling information for the x-axis, where applicable:

- Start channel/chip/frame/slot
- Channel/chip/frame/slot per division
- Stop channel/chip/frame/slot

For the **Bitstream** evaluation, the diagram footer indicates:

- Channel format (type and modulation type (HS-PDSCH only))
- Number of data bits
- Number of TPC bits
- Number of TFCI bits
- Number of pilot bits

(The bit numbers are indicated in the order they occur.)

Status bar information

Global instrument settings, the instrument status and any irregularities are indicated in the status bar beneath the diagram. Furthermore, the progress of the current operation is displayed in the status bar.

3 Measurements and Result Display

The 3GPP FDD applications provide several different measurements for signals according to the 3GPP FDD standard. The main and default measurement is Code Domain Analysis. Furthermore, a Time Alignment Error measurement is provided. In addition to the code domain power measurements specified by the 3GPP standard, the 3GPP FDD options offer measurements with predefined settings in the frequency domain, e.g. RF power measurements.

Evaluation methods

The captured and processed data for each measurement can be evaluated with various different methods. All evaluation methods available for the selected 3GPP FDD measurement are displayed in the evaluation bar in SmartGrid mode.

Evaluation range

You can restrict evaluation to a specific channel, frame or slot, depending on the evaluation method. See chapter 6.1, "Evaluation Range", on page 106.

•	Code Domain Analysis	12
•	Time Alignment Error Measurements	30

3.1 Code Domain Analysis

The Code Domain Analysis measurement provides various evaluation methods and result diagrams.

The code domain power measurements are performed as specified by the 3GPP standards. A signal section of approximately 20 ms is recorded for analysis and then searched through to find the start of a 3GPP FDD frame. If a frame start is found in the signal, the code domain power analysis is performed for a complete frame starting from slot 0. The different evaluations are calculated from the captured I/Q data set. Therefore it is not necessary to start a new measurement in order to change the evaluation.

The 3GPP FDD applications provide the peak code domain error measurement and composite EVM specified by the 3GPP standard, as well as the code domain power measurement of assigned and unassigned codes. The power can be displayed either for all channels in one slot, or for one channel in all slots. The composite constellation diagram of the entire signal can also be displayed. In addition, the symbols demodulated in a slot, their power, and the determined bits or the symbol EVM can be displayed for an active channel.

The power of a code channel is always measured in relation to its symbol rate within the code domain. It can be displayed either as absolute values or relative to the total signal or the CPICH channel. By default, the power relative to the CPICH channel is displayed. The total power may vary depending on the slot, since the power can be controlled on a per-slot-basis. The power in the CPICH channel, on the other hand, is constant in all slots.

For all measurements performed in a slot of a selected channel (bits, symbols, symbol power, EVM), the actual slot spacing of the channel is taken as a basis, rather than the CPICH slots. The time reference for the start of a slot is the CPICH slot. If code channels contain a timing offset, the start of a specific slot of the channel differs from the start of the reference channel (CPICH). Thus, the power-per-channel display may not be correct. If channels with a timing offset contain a power control circuit, the channel-power-versus-time display may provide better results.

The composite EVM, peak code domain error and composite constellation measurements are always referenced to the total signal.

SCPI command:

CONF:WCDP:MEAS WCDP, see CONFigure:WCDPower[:BTS]:MEASurement on page 143

3.1.1 Code Domain Parameters

Two different types of measurement results are determined and displayed in the Result Summary: global results and channel results (for the selected channel).

The number of the CPICH slot at which the measurement is performed is indicated globally for the measurement in the channel bar.

The spreading code of the selected channel is indicated with the channel number in the channel bar and above the channel-specific results in the Result Summary.

In the Channel Table, the analysis results for all active channels are displayed.

 Table 3-1: General code domain power results for a specific frame and slot

Parameter	Description	
Total Power:	The total signal power (average power of total evaluated slot).	
Carrier Freq Error:	The frequency error relative to the center frequency of the analyzer. The absolute frequency error is the sum of the analyzer and DUT frequency error. The specified value is averaged for one (CPICH) slot. See also the note below this table.	
Chip Rate Error: The chip rate error in the frame to analyze in ppm. As a result of a high ch symbol errors arise and the CDP measurement is possibly not synchror 3GPP FDD BTS signal. The result is valid even if synchronization of the a signal failed.		
Trigger to Frame:	The time difference between the beginning of the recorded signal section to the start of the analyzed frame. In case of triggered data collection, this difference is identical with the time difference of frame trigger (+ trigger offset) – frame start. If synchronization of the analyzer and input signal fails, the value of "Trigger to Frame" is not significant.	
IQ Offset:	DC offset of the signal in the selected slot in %	
IQ Imbalance:	I/Q imbalance of signals in the selected slot in %	
Avg Power Inact Chan	Average power of the inactive channels	

Parameter	Description
Composite EVM:	The composite EVM is the difference between the test signal and the ideal reference signal in the selected slot in %. See also "Composite EVM" on page 20
Pk CDE (15 ksps):	The Peak Code Domain Error projects the difference between the test signal and the ideal reference signal onto the selected spreading factor in the selected slot (see "Peak Code Domain Error" on page 24). The spreading factor onto which projection is performed can be derived from the symbol rate indicated in brackets.
RHO	Quality parameter RHO for each slot.
No of Active Chan:	The number of active channels detected in the signal in the selected slot. Both the detected data channels and the control channels are considered active channels.
Avg. RCDE (64 QAM)	Average Relative Code Domain Error over all channels detected with 64 QAM (UE: 4PAM) modulation in the selected frame.

Carrier Frequency Error

The maximum frequency error that can be compensated is specified in Maximum frequency error that can be compensated as a function of the synchronization mode. Transmitter and receiver should be synchronized as far as possible.

Table 3-2: Maximum frequency error that can be compensated

SYNC mode	ANTENNA DIV	Max. Freq. Offset
СРІСН	x	5.0 kHz
SCH	OFF	1.6 kHz
SCH	ANT 1	330 Hz
SCH	ANT 2	330 Hz

Table 3-3: Channel-specific code domain power results

Symbol Rate:	Symbol rate at which the channel is transmitted
Channel Slot No:	(BTS measurements only): Channel slot number; determined by combining the value of the selected CPICH and the channel's timing offset
Channel Mapping	(UE measurements only): Branch onto which the channel is mapped (I or Q, specified by the standard)
Chan Power Abs:	Channel power, absolute
Chan Power Rel:	Channel power, relative (referenced to CPICH or total signal power)
Timing Offset:	Offset between the start of the first slot in the channel and the start of the analyzed 3GPP FDD BTS frame
RCDE	Relative Code Domain Error for the complete frame of the selected channel
Symbol EVM:	Peak and average of the results of the error vector magnitude evaluation

No of Pilot Bits:	Number of pilot bits of the selected channel
Modulation Type:	BTS measurements:
	Modulation type of an HSDPA channel. High speed physical data channels can be modulated with QPSK, 16 QAM or 64 QAM modulation. UE measurements: the modulation type of the selected channel. Valid entries are:
	 BPSK I for channels on I-branch BPSK Q for channels on Q-branch NONE for inactive channels

3.1.2 Evaluation Methods for Code Domain Analysis

The captured I/Q data can be evaluated using various different methods without having to start a new measurement. All evaluation methods available for the selected 3GPP FDD measurement are displayed in the evaluation bar in SmartGrid mode.

The selected evaluation also affects the results of the trace data query (see chapter 10.7.2, "Measurement Results for TRACe<n>[:DATA]? TRACE<n>", on page 222).

Bitstream	
Channel Table	
L Table Configuration	
Code Domain Power	
Code Domain Error Power	19
Composite Constellation	
Composite EVM	
EVM vs Chip	
Frequency Error vs Slot	
Mag Error vs Chip	
Marker Table	
Peak Code Domain Error	
Phase Discontinuity vs Slot	
Phase Error vs Chip	
Power vs Slot	
Power vs Symbol	
Result Summary	
Symbol Constellation	
Symbol EVM	
Symbol Magnitude Error	
Symbol Phase Error	
-	

Bitstream

The "Bitstream" evaluation displays the demodulated bits of a selected channel for a given slot. Depending on the symbol rate the number of symbols within a slot can vary from 12 (min) to 384 (max). For QPSK modulation a symbol consists of 2 Bits (I and Q). For BPSK modulation a symbol consists of 1 Bit (only I used).

1 Bits	trean	n Tab	le																						
	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	- 36	38	40	42	44	46	48
0	11	00	10	00	01	10	10	10	01	10	01	10	00	00	00	11	11	11	11	10					
50																									
100																									
150																									
200																									
250																									
300																									
350																									
400																									
450																									
500																									
550																									
600																									
650																									
700																									
750																									
	For	mat :	DPC	I _10			6 :	k Dat	a1		2	x TP	C		0 х	IFCI			24 x	Data	2		8 х	Pilot	

Fig. 3-1: Bitstream display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, 'XTIM:CDP:BSTR', **See** LAYout:ADD[:WINDow]? on page 204

TRACe<n>[:DATA]? ABITstream

Channel Table

The "Channel Table" evaluation displays the detected channels and the results of the code domain power measurement. The channel table can contain a maximum of 512 entries.

In BTS measurements, this corresponds to the 512 codes that can be assigned within the class of spreading factor 512.

In UE measurements, this corresponds to the 256 codes that can be assigned within the class of spreading factor 256, with both I and Q branches.

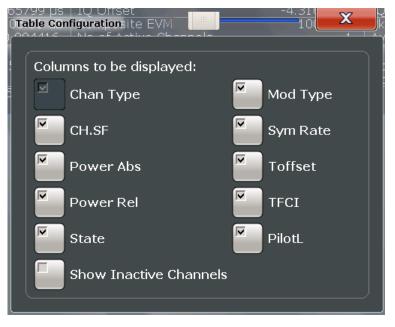
The first entries of the table indicate the channels that must be available in the signal to be analyzed and any other control channels (see chapter 4.2, "BTS Channel Types", on page 43 and chapter 4.3, "UE Channel Types", on page 46).

The lower part of the table indicates the data channels that are contained in the signal.

If the type of a channel can be fully recognized, based on pilot sequences or modulation type, the type is indicated in the table. In BTS measurements, all other channels are of type CHAN.

The channels are in descending order according to symbol rates and, within a symbol rate, in ascending order according to the channel numbers. Therefore, the unassigned codes are always displayed at the end of the table.

2 Channel Table									
Chan Type	Ch.SF	SymRate [ksps]	State	TFCI	PilotL [Bits]	PwrAbs [dBm]	PwrRel [dB]	Toffs [Chips]	•
CRICH	0.256	15	N	OFF	0	34.47	0.00	.0.90	
PSCH SSCH		0	0N 70	OFF	0	-37.74 -37.06	-3.27 -2.59	0.00	
PCCPCH	1.256	15	ON	OFF	0	-34.38	0.09	0.00	
SCCPCH	3.256	15	ÖN	OFF		-42.32	-7.85	0.00	
PICH	16.256	15	ON	OFF	ŏ	-42.26	-7.79	30720.0	
HSPDSCH-16QAM	4.16	240	ON	OFF	0	-28.30	6.17	0.00	
HSPDSCH-16QAM	12.16	240	ON	OFF		-28.56	5.91	0.00	
HSSCCH	9.128	30	ON	OFF		-38.40	-3.93	0.00	
DPCH	15.128	- 30	ON	OFF	8	-40.38	-5.91	22016.0	
DPCH	23.128	30	ON	OFF		-38.32	-3.85	34304.0	
HSSCCH	29.128	30	ON	OFF		-44.38	-9,91	0.00	
DPCH	68.128	30	ON	OFF	8	-38,46	-3.99	13312.0	and a
DPCH	76.128	30	ON	OFF		-41.38	-6.91	11520.0	

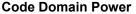

Fig. 3-2: Channel Table display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1',RIGH, CTABle, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? CTABLe TRACe<n>[:DATA]? PWCDp TRACe<n>[:DATA]? CWCDp

Table Configuration - Channel Table

You can configure which parameters are displayed in the Channel Table by double-clicking the table header. A "Table Configuration" dialog box is displayed in which you can select the columns to be displayed.



By default, only active channels are displayed. In order to display all channels, including the inactive ones, enable the "Show Inactive Channels" option.

The following parameters of the detected channels are determined by the CDP measurement and can be displayed in the Channel Table evaluation. (For details see chapter 3.1.1, "Code Domain Parameters", on page 13.)

Label	Description
Chan Type	Type of channel (active channels only)
Ch. SF	Number of channel spreading code (0 to [spreading factor-1])
Symbol Rate [ksps]	Symbol rate at which the channel is transmitted In BTS measurements: always
State	Active: channel is active and all pilot symbols are correct Inactive: channel is not active Pilotf: channel is active, but pilot symbols incomplete or missing
TFCI	(BTS measurements only): Data channel uses TFCI symbols
Mapping	(UE measurements only): Branch the channel is mapped to (I or Q)
PilotL [Bits]	Number of pilot bits in the channel (UE measurements: only for control channel DPCCH)
Pwr Abs [dBm]/Pwr Rel [dBm]	Absolute and relative channel power (referred to the CPICH or the total power of the signal)
T Offs [Chips]	(BTS measurements only): Timing offset

Table 3-4: Code domain power results in the channel table

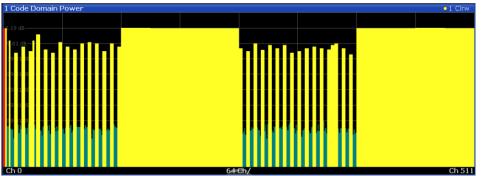


Fig. 3-3: Code Domain Power Display for 3GPP FDD BTS measurements

The "Code Domain Power" evaluation shows the power of all possible code channels in the selected channel slot. The x-axis shows the possible code channels from 0 to the highest spreading factor. Due to the circumstance that the power is regulated from slot to slot, the result power may differ between different slots. Detected channels are displayed yellow. The selected code channel is highlighted red. The codes where no channel could be detected are displayed green.

Note: Effects of missing or incomplete pilot symbols. In "Autosearch" channel detection mode, the application expects specific pilot symbols for DPCH channels. If these symbols are missing or incomplete, the channel power in the Code Domain Power evaluation is displayed green at the points of the diagram the channel should appear due to its spreading code, and a message ("INCORRECT PILOT") is displayed in the status bar. In this

case, check the pilot symbols for those channels using the "Power vs Slot" or the "Bitstream" evaluations.

Optionally, all QPSK-modulated channels can also be recognized without pilot symbols (see "HSDPA/UPA" on page 60).

SCPI command:

LAY:ADD? '1',RIGH, CDPower, see LAYout:ADD[:WINDow]? on page 204 CALC:MARK:FUNC:WCDP:RES? CDP, see CALCulate<n>:MARKer<m>:FUNCtion: WCDPower[:BTS]:RESult? on page 218 CALC:MARK:FUNC:WCDP:MS:RES? CDP, see CALCulate<n>:MARKer<m>: FUNCtion:WCDPower:MS:RESult? on page 220 TRACe<n>[:DATA]? CTABle

TRACe<n>[:DATA]? PWCDp

TRACe<n>[:DATA]? CWCDp

Code Domain Error Power

"Code Domain Error Power" is the difference in power between the measured and the ideal signal. The unit is dB. There are no other units for the y-axis.

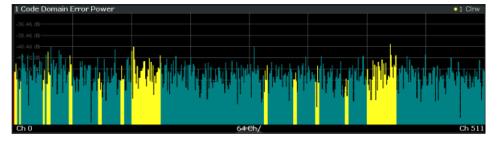


Fig. 3-4: Code Domain Error Power Display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1',RIGH, CDEPower, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Composite Constellation

The "Composite Constellation" evaluation analyzes the entire signal for one single slot. If a large number of channels is to be analyzed, the results are superimposed. In that case the benefit of this evaluation is limited (senseless).

In "Composite Constellation" evaluation the constellation points of the 1536 chips are displayed for the specified slot. This data is determined inside the DSP even before the channel search. Thus, it is not possible to assign constellation points to channels. The constellation points are displayed normalized with respect to the total power.

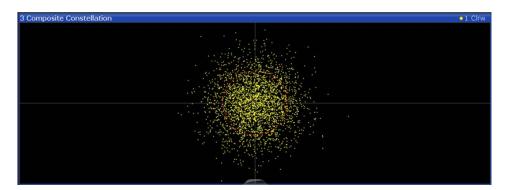


Fig. 3-5: Composite Constellation display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, CCONst, **see** LAYout:ADD[:WINDow]? **on page 204** TRACe<n>[:DATA]? TRACE<1...4>

Composite EVM

The "Composite EVM" evaluation displays the root mean square composite EVM (modulation accuracy) according to the 3GPP specification. The square root is determined of the mean squared errors between the real and imaginary components of the received signal and an ideal reference signal (EVM referenced to the total signal). The error is averaged over all channels for individual slots. The "Composite EVM" evaluation covers the entire signal during the entire observation time.

$$EVM_{RMS} = \sqrt{\frac{\sum_{n=0}^{N} |s_n - x_n|^2}{\sum_{n=0}^{N-1} |x_n|^2}} *100\% \quad | \quad N = 2560$$

where:

EVM _{RMS}	root mean square of the vector error of the composite signal
s _n	complex chip value of received signal
x _n	complex chip value of reference signal
n	index number for mean power calculation of received and reference signal.
Ν	number of chips at each CPICH slot

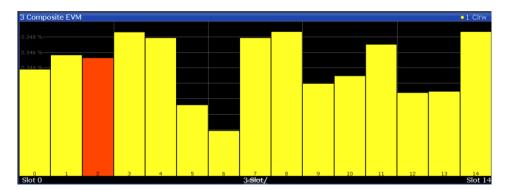


Fig. 3-6: CompositE EVM display for 3GPP FDD BTS measurements

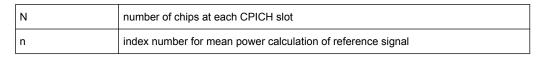
The measurement result consists of one composite EVM measurement value per slot. In this case, the measurement interval is the slot spacing of the CPICH (timing offset of 0 chips referenced to the beginning of the frame). Only the channels recognized as active are used to generate the ideal reference signal. If an assigned channel is not recognized as active since pilot symbols are missing or incomplete, the difference between the measurement and reference signal and the composite EVM is very high.

SCPI command:

LAY:ADD? '1', RIGH, CEVM, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

EVM vs Chip

EVM vs Chip activates the Error Vector Magnitude (EVM) versus chip display. The EVM is displayed for all chips of the selected slot.


Note: In UE measurements, if the measurement interval "Halfslot" is selected for evaluation, 30 slots are displayed instead of the usual 15 (see "Measurement Interval" on page 112).

The EVM is calculated by the root of the square difference of received signal and reference signal. The reference signal is estimated from the channel configuration of all active channels. The EVM is related to the square root of the mean power of reference signal and given in percent.

$$EVM_{k} = \sqrt{\frac{\left|S_{k} - X_{k}\right|^{2}}{\frac{1}{N}\sum_{n=0}^{N-1} \left|x_{n}\right|^{2}}} \bullet 100\% \quad |N = 2560 \quad |k \in [0...(N-1)]$$

where:

EVM _k	vector error of the chip EVM of chip number k			
s _k complex chip value of received signal				
x _k	complex chip value of reference signal			
k	index number of the evaluated chip			

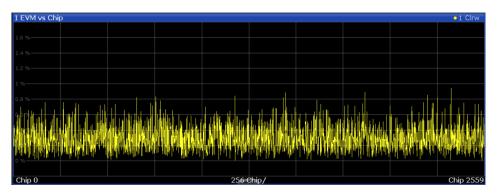


Fig. 3-7: EVM vs Chip display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, EVMChip, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Frequency Error vs Slot

For each value to be displayed, the difference between the frequency error of the corresponding slot to the frequency error of the first (zero) slot is calculated (based on CPICH slots). This helps eliminate a static frequency offset of the whole signal to achieve a better display of the actual time-dependent frequency diagram.

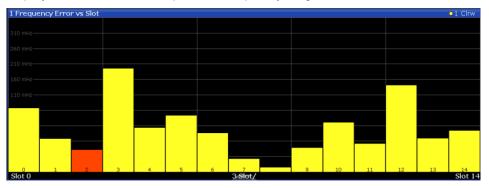


Fig. 3-8: Frequency Error vs Slot display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, FESLot, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? ATRACE

Mag Error vs Chip

Mag Error vs Chip activates the Magnitude Error versus chip display. The magnitude error is displayed for all chips of the slected slot.

Note: In UE measurements, if the measurement interval "Halfslot" is selected for evaluation, 30 slots are displayed instead of the usual 15 (see "Measurement Interval" on page 112). The magnitude error is calculated as the difference of the magnitude of the received signal to the magnitude of the reference signal. The reference signal is estimated from the channel configuration of all active channels. The magnitude error is related to the square root of the mean power of reference signal and given in percent.

$$MAG_{k} = \sqrt{\frac{|s_{k}| - |x_{k}|}{\frac{1}{N} \sum_{n=0}^{N-1} |x_{n}|^{2}}} \bullet 100\% | N = 2560 | k \in [0...(N-1)]$$

where:

MAG _k	magnitude error of chip number k
s _k	complex chip value of received signal
x _k	complex chip value of reference signal
k	index number of the evaluated chip
N	number of chips at each CPICH slot
n	index number for mean power calculation of reference signal

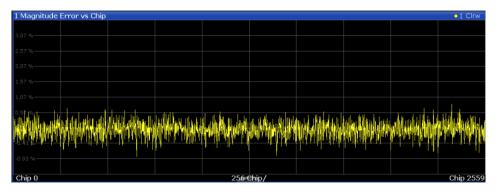


Fig. 3-9: Magnitude Error vs Chip display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, MECHip, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Marker Table

Displays a table with the current marker values for the active markers.

This table may be displayed automatically if configured accordingly (see "Marker Table Display" on page 117).

2 Marker	r										
Type	Ref	Trc	Stimulus	Response	Function	Function Result					
N1		1	13.197 GHz	-25.87 dBm	Count	13.197052					
D1	N1	1	-7.942 GHz	-49.41 dB							
D2	N1	2	-3.918 GHz	-21.90 dB							
0.0	5.14	~	1 00 1 01 1-	01.00.10							

SCPI command:

LAY: ADD? '1', RIGH, MTAB, see LAYout: ADD[:WINDow]? on page 204

Peak Code Domain Error

In line with the 3GPP specifications, the error between the measurement signal and the ideal reference signal for a given slot and for all codes is projected onto the various spreading factors. The result consists of the peak code domain error value per slot. The measurement interval is the slot spacing of the CPICH (timing offset of 0 chips referenced to the beginning of the frame). Only the channels recognized as active are used to generate the ideal reference signal for the peak code domain error. If an assigned channel is not recognized as active since pilot symbols are missing or incomplete, the difference between the measurement and reference signal is very high. This display is a bar diagram over slots. The unit is dB. The Peak Code Domain Error evaluation covers the entire signal and the entire observation time.

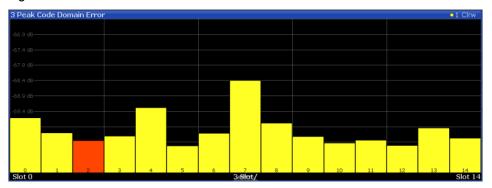


Fig. 3-10: Peak Code Domain Error display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, PCDerror, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Phase Discontinuity vs Slot

The "Phase Discontinuity vs Slot" is calculated according to 3GPP specifications. The phase calculated for each slot is interpolated to both ends of the slot using the frequency shift of that slot. The difference between the phase interpolated for the beginning of one slot and the end of the preceding slot is displayed as the phase discontinuity of that slot.

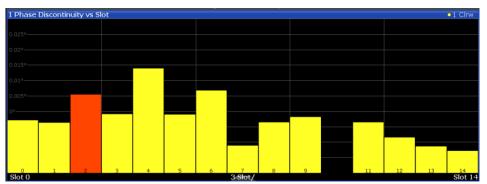


Fig. 3-11: Phase Discontinuity vs Slot display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, PDSLot, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Phase Error vs Chip

"Phase Error vs Chip" activates the phase error versus chip display. The phase error is displayed for all chips of the slected slot.

Note: In UE measurements, if the measurement interval "Halfslot" is selected for evaluation, 30 slots are displayed instead of the usual 15 (see "Measurement Interval" on page 112).

The phase error is calculated by the difference of the phase of received signal and phase of reference signal. The reference signal is estimated from the channel configuration of all active channels. The phase error is given in degrees in a range of $+180^{\circ}$ to -180° .

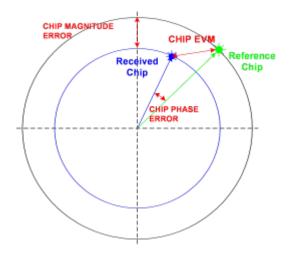
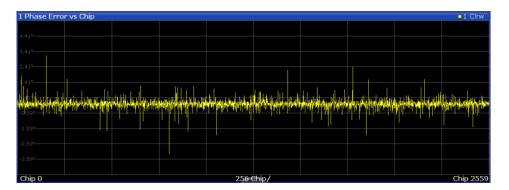



Fig. 3-12: Calculating the magnitude, phase and vector error per chip

•
$$PHI_k = \varphi(s_k) - \varphi(x_k) \mid N = 2560 \mid k \in [0...(N-1)]$$

where:

PHI _k	phase error of chip number k
S _k	complex chip value of received signal
x _k	complex chip value of reference signal
k	index number of the evaluated chip
N	number of chips at each CPICH slot
φ(x)	phase calculation of a complex value

SCPI command:

LAY:ADD? '1', RIGH, PECHip, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Power vs Slot

The "Power vs Slot" evaluation displays the power of the selected channel for each slot. The power is displayed either absolute or relative to the total power of the signal or to the CPICH channel.

Note: In UE measurements, this evaluation is only available if the analysis mode "Frame" is selected (see "Analysis Mode (UE measurements only)" on page 84). If the measurement interval "Halfslot" is selected for evaluation, 30 slots are displayed instead of the usual 15 (see "Measurement Interval" on page 112).

Fig. 3-13: Power vs Slot Display for 3GPP FDD BTS measurements

If a timing offset of the selected channel in relation to the CPICH channel occurrs, the power is calculated and displayed per channel slot (as opposed to the Code Domain Power evaluation). However, for reference purposes, the grid in the Power vs Slot diagram indicates the CPICH slots. The first CPICH slot is always slot 0, the grid and labels of the grid lines do not change. Thus, the channel slots may be shifted in the diagram grid. The channel slot numbers are indicated within the power bars. The selected slot is highlighted in the diagram.

SCPI command:

LAY:ADD? '1', RIGH, PSLot, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TPVSlot

Power vs Symbol

The "Power vs. Symbol" evaluation shows the power over the symbol number for the selected channel and the selected slot. The power is not averaged here. The trace is drawn using a histogram line algorithm, i.e. only vertical and horizontal lines, no diagonal, linear Interpolation (polygon interpolation). Surfaces are NOT filled.

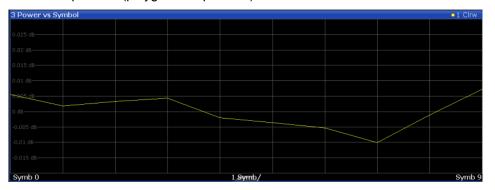


Fig. 3-14: Power vs Symbol display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, PSYMbol, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Result Summary

The Result Summary evaluation displays a list of measurement results on the screen. For details see chapter 3.1.1, "Code Domain Parameters", on page 13.

2 Result Summary					
General Results (Frame 0, Cl	PICH Slot 2)				
Total Power	-10.79 dBm	Carrier Freg Error	-1.46 kHz	Chip Rate Error	1.46 ppm
Trigger To Frame	4.176281 ms	IQ Offset	0.08	IQ Imbalance	0.05 %
Avg Power Inact Chan		Composite EVM	0.34 %	Pk CDE(15 Ksps)	-70.17 dB
Rho		No of Active Channels	44	Avg.RCDE(64QAM)	
Channel Results (Ch 19.128)					
Symbol Rate	30 ksym/s	Timing Offset	6400 Chips	No of Pilot Bits	8
Channel Slot No		RCDE	-45.43 dB	Modulation Type	OPSK
Channel Power Abs	-35.82 dBm	Symbol EVM	1.23 % PK		
Channel Power Rel	-13.99 dB	Symbol EVM	0.66 % rms		

Fig. 3-15: Result Summary display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, RSUMmary, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Symbol Constellation

The "Symbol Constellation" evaluation shows all modulated signals of the selected channel and the selected slot. QPSK constellation points are located on the diagonals (not x and y-axis) of the constellation diagram. BPSK constellation points are always on the xaxis.

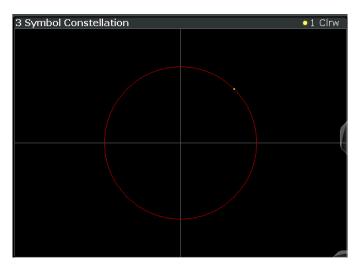


Fig. 3-16: Symbol Constellation display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, SCONst, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Symbol EVM

The "Symbol EVM" evaluation shows the error between the measured signal and the ideal reference signal in percent for the selected channel and the selected slot. A trace over all symbols of a slot is drawn. The number of symbols is in the range from 12 (min) to 384 (max). It depends on the symbol rate of the channel.

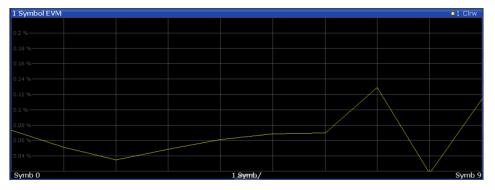


Fig. 3-17: Symbol EVM display for 3GPP FDD BTS measurements

SCPI command:

```
LAY:ADD? '1', RIGH, SEVM, see LAYout:ADD[:WINDow]? on page 204
TRACe<n>[:DATA]? TRACE<1...4>
```

Symbol Magnitude Error

The "Symbol Magnitude Error" is calculated analogous to symbol EVM. The result is one symbol magnitude error value for each symbol of the slot of a special channel. Positive values of symbol magnitude error indicate a symbol magnitude that is larger than the expected ideal value; negative symbol magnitude errors indicate a symbol magnitude that is less than the ideal one. The symbol magnitude error is the difference between the magnitude of the received symbol and that of the reference symbol, related to the magnitude of the reference symbol.

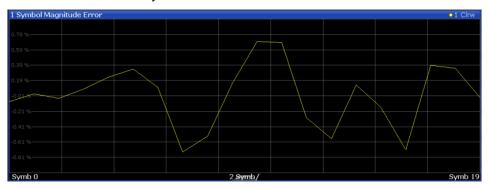


Fig. 3-18: Symbol Magnitude Error display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, SMERror, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

Symbol Phase Error

The "Symbol Phase Error" is calculated analogous to symbol EVM. The result is one symbol phase error value for each symbol of the slot of a special channel. Positive values of symbol phase error indicate a symbol phase that is larger than the expected ideal value; negative symbol phase errors indicate a symbol phase that is less than the ideal one.

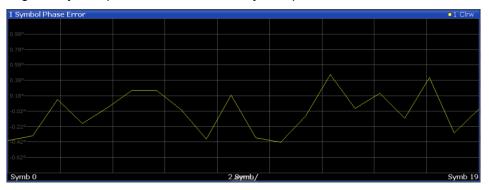


Fig. 3-19: Symbol Phase Error display for 3GPP FDD BTS measurements

SCPI command:

LAY:ADD? '1', RIGH, SPERror, see LAYout:ADD[:WINDow]? on page 204 TRACe<n>[:DATA]? TRACE<1...4>

3.1.3 CDA Measurements in MSRA Operating Mode

The 3GPP FDD BTS application can also be used to analyze data in MSRA operating mode.

In MSRA operating mode, only the MSRA Master actually captures data; the MSRA applications receive an extract of the captured data for analysis, referred to as the **application data**. The application data range is indicated in the MSRA Master by vertical blue lines.

However, the individual result displays of the application need not analyze the complete data range. The data range that is actually analyzed by the individual result display is referred to as the **analysis interval**.

In the 3GPP FDD BTS application the analysis interval is automatically determined according to the selected channel, slot or frame to analyze which is defined for the evaluation range, depending on the result display. The currently used analysis interval (in seconds, related to capture buffer start) is indicated in the window header for each result display.

For details on the MSRA operating mode see the R&S FSW MSRA User Manual.

3.2 Time Alignment Error Measurements

Time Alignment Error Measurements are a special type of Code Domain Analysis used to determine the time offset between the signals of both antennas of a base station.

They are only available in 3GPP FDD BTS measurements.

The result is displayed numerically on the screen, a graphical result is not available.

Measurement setup

The antenna signals of the two BTS transmitter branches are fed to the analyzer via a combiner. Each antenna must provide a common pilot channel, i.e. P-CPICH for antenna 1 and P-CPICH or S-CPICH for antenna 2. The figure 3-20 shows the measurement setup.

Time Alignment Error Measurements

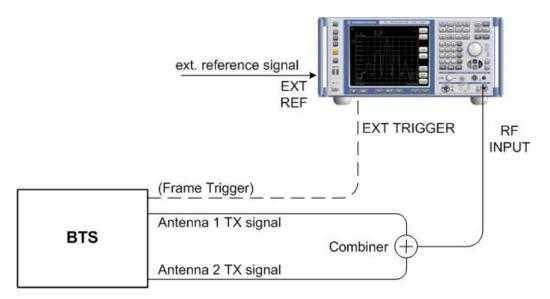


Fig. 3-20: Time Alignment Error Measurement setup

Synchronization check

There is a synchronization check for both antennas which must have the result "Sync OK" to ensure a proper TAE result. With the messages "No antenna 1 sync", "No antenna 2 sync" and "No sync", synchronization problems are indicated separately for each antenna, which can also be read remotely via bits 1 and 2 of the Sync status register (see chapter 10.10, "Querying the Status Registers", on page 251).

Evaluation Methods

For Time Alignment Error measurements, the following evaluation methods are available:

Result List

Indicates the time delay (in chips) of the signal at antenna 2 relative to the signal at antenna 1.

RF Measurements

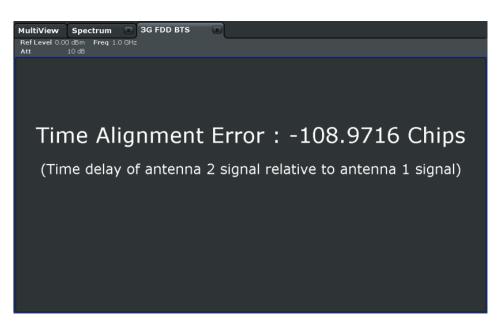


Fig. 3-21: Time Alignment Error display for 3GPP FDD BTS measurements

SCPI command: CONF:WCDP:MEAS TAE, see CONFigure:WCDPower[:BTS]:MEASurement on page 143 CALCulate<n>:MARKer<m>:FUNCtion:TAERror:RESult? on page 218

3.3 RF Measurements

In addition to the Code Domain Analysis measurements, the 3GPP FDD applications also provide some RF measurements as defined in the 3GPP FDD standard. RF measurements are identical to the corresponding measurements in the base unit, but configured according to the requirements of the 3GPP FDD standard.

For details on these measurements see the R&S FSW User Manual.

MSRA operating mode

RF measurements are not available in MSRA operating mode. For details on the MSRA operating mode see the R&S FSW MSRA User Manual.

3.3.1 RF Measurement Types and Results

The 3GPP FDD applications provide the following RF measurements:

Ch Power ACLR	
Occupied Bandwidth	
Power	

RF Measurements

RF Combi	34
Spectrum Emission Mask	35
CCDF	

Ch Power ACLR

Channel Power ACLR performs an adjacent channel power measurement in the default setting according to 3GPP specifications (adjacent channel leakage ratio).

The R&S FSW measures the channel power and the relative power of the adjacent channels and of the alternate channels. The results are displayed below the diagram.

SCPI command:

CONF:WCDP:MEAS ACLR, **see** CONFigure:WCDPower[:BTS]:MEASurement on page 143

Querying results:

CALC:MARK:FUNC:POW:RES? ACP, **see** CALCulate<n>:MARKer<m>:FUNCtion: POWer:RESult? **on page 238** CALC:MARK:FUNC:POW:RES? ACP, **see** CALCulate<n>:MARKer<m>:FUNCtion:

Occupied Bandwidth

POWer: RESult? on page 238

The Occupied Bandwidth measurement determines the bandwidth that the signal occupies.

The occupied bandwidth is defined as the bandwidth in which – in default settings -99 % of the total signal power is to be found. The percentage of the signal power to be included in the bandwidth measurement can be changed.

The occupied bandwidth (Occ BW) and the frequency markers are displayed in the marker table.

SCPI command:

CONF:WCDP:MEAS OBAN, see CONFigure:WCDPower[:BTS]:MEASurement on page 143

Querying results:

CALC:MARK:FUNC:POW:RES? OBW, **See** CALCulate<n>:MARKer<m>:FUNCtion: POWer:RESult? **on page 238**

CALC:MARK:FUNC:POW:RES? ACP, **see** CALCulate<n>:MARKer<m>:FUNCtion: POWer:RESult? **on page 238**

Power

The Output Power measurement determines the 3GPP FDD signal channel power. The R&S FSW measures the unweighted RF signal power in a bandwidth of:

 $f_{RW} = 5MHz \ge (1+\alpha) \cdot 3.84MHz$ | $\alpha = 0.22$

The power is measured in zero span mode (time domain) using a digital channel filter of 5 MHz in bandwidth. According to the 3GPP standard, the measurement bandwidth (5 MHz) is slightly larger than the minimum required bandwidth of 4.7 MHz. The bandwidth is displayed numerically below the screen.

SCPI command:

CONF:WCDP:MEAS POW, see CONFigure:WCDPower[:BTS]:MEASurement on page 143

Querying results: CALC:MARK:FUNC:POW:RES? CPOW, see CALCulate<n>: MARKer<m>:FUNCtion:POWer:RESult? on page 238

CALC:MARK:FUNC:POW:RES? ACP, **See** CALCulate<n>:MARKer<m>:FUNCtion: POWer:RESult? **on page 238**

RF Combi

This measurement combines the following measurements:

- "Ch Power ACLR" on page 33
- "Occupied Bandwidth" on page 33
- "Spectrum Emission Mask" on page 35

The ACLR and OBW are measured on trace 1, from which the SEM trace 2 is derived via integration.

The advantage of the RF COMBI measurement is that all RF results are measured with a single measurement process. This measurement is faster than the three individual measurements.

RF Measurements

Fig. 3-22: RF Combi measurement results

SCPI command:

CONF:WCDP:BTS:MEAS RFC, see CONFigure:WCDPower[:BTS]:MEASurement on page 143

Querying results:

CALC:MARK:FUNC:POW:RES? ACPCALCulate<n>:MARKer<m>:FUNCtion:

POWer: RESult? on page 238

CALC:MARK:FUNC:POW:RES? OBW

CALC:MARK:FUNC:POW:RES? CPOW

CALC:MARK:FUNC:POW:RES? ACP, See CALCulate<n>:MARKer<m>:FUNCtion:

POWer:RESult? on page 238

CALC:MARK:FUNC:POW:RES? OBW

CALC:MARK:FUNC:POW:RES? CPOW

CALCulate<n>:LIMit<k>:FAIL on page 238

Spectrum Emission Mask

The Spectrum Emission Mask measurement determines the power of the 3GPP FDD signal in defined offsets from the carrier and compares the power values with a spectral mask specified by 3GPP.

RF Measurements

MultiView Sp	ectrum 📧 30	G FDD BTS							
Ref Level 0.00 dBn	n Mode	Auto Sweep							
1 Spectrum Emissio	on Mask								• 1Rm Clrw
Limit Check -10 dB ^P		PASS							
			n 1536 Marthard	Wind Harris					
			A MAR WAR	Mana . 1 . 1 . A					
			1						
			1						
Jergen Material magazine	an marked and a share and	northewesting							
						Landred	and the second sec	juphicnah	Her forthe and attinger and and the
		monthal			Window				
CF 1.0 GHz		1001 pt	s 🖉		2.55 MHz				Span 25.5 MH
2 Result Summary									W-CDMA 3GPP DI
			Bandwidth 3.840 MHz			RBW 1.000 MHz			
Range Low	Range Up	RBW		uency		er Abs	Power		ΔLimit
-12.750 MHz	-8.000 MHz	1.000 MHz		078 MHz		7 dBm	-66.69		-52.91 dB
-8.000 MHz	-4.000 MHz	1.000 MHz		987 MHz		0 dBm	-67.02		-55.89 dB
-4.000 MHz	-3.515 MHz	30.000 kHz		908 MHz		3 dBm	-82.55		-61.03 dB
-3.515 MHz	-2.715 MHz	30.000 kHz		L13 MHz		5 dBm	-83.37		-63.59 dB
-2.715 MHz	-2.515 MHz	30.000 kHz	997.470			3 dBm	-79.85		-70.33 dB
2.515 MHz	2.715 MHz	30.000 kHz		267 GHz		1 dBm	-80.73		-71.21 dB
2.715 MHz	3.515 MHz	30.000 kHz		350 GHz		2 dBm	-82.54		-61.21 dB
3.515 MHz	4.000 MHz	30.000 kHz		396 GHz		1 dBm	-81.73		-60.21 dB
4.000 MHz	8.000 MHz	1.000 MHz		409 GHz		8 dBm	-67.60		-59.08 dB
8.000 MHz	12.750 MHz	1.000 MHz	1.01	274 GHz	-80.4	7 dBm	-69.49	dB	-56.97 dB

Fig. 3-23: SEM measurement results for 3GPP FDD BTS measurements

SCPI command:

CONF:WCDP:MEAS ESP, **See** CONFigure:WCDPower[:BTS]:MEASurement on page 143

Querying results:

CALC:MARK:FUNC:POW:RES? CPOW, **see** CALCulate<n>:MARKer<m>:FUNCtion: POWer:RESult? **on page 238**

CALC:MARK:FUNC:POW:RES? ACP, **See** CALCulate<n>:MARKer<m>:FUNCtion:

POWer:RESult? on page 238

CALCulate<n>:LIMit<k>:FAIL on page 238

CCDF

The CCDF measurement determines the distribution of the signal amplitudes (complementary cumulative distribution function). The CCDF and the Crest factor are displayed. For the purposes of this measurement, a signal section of user-definable length is recorded continuously in the zero span, and the distribution of the signal amplitudes is evaluated.

RF Measurements

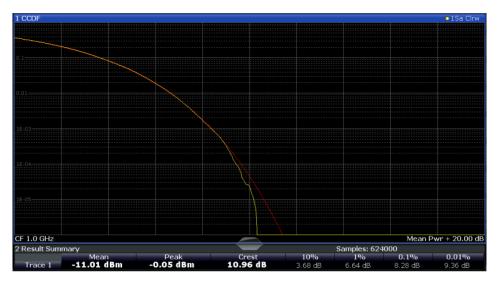


Fig. 3-24: CCDF measurement results for 3GPP FDD BTS measurements

SCPI command:

CONF:WCDP:MEAS CCDF, see CONFigure:WCDPower[:BTS]:MEASurement
on page 143
Querying results:
CALCulate<n>:MARKer<m>:Y? on page 240
CALC:MARK:FUNC:POW:RES? ACP, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer:RESult? on page 238
CALC:MARK:FUNC:POW:RES? ACP, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer:RESult? on page 238
CALC:MARK:FUNC:POW:RES? ACP, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer:RESult? on page 238
CALCulate<n>:STATistics:RESult<t> on page 240

3.3.2 Evaluation Methods for RF Measurements

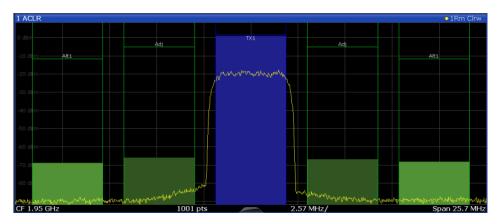

The evaluation methods for RF measurements are identical to those in the Spectrum application.

Diagram	.37
Result Summary	
Marker Table	
Marker Peak List	.38

Diagram

Displays a basic level vs. frequency or level vs. time diagram of the measured data to evaluate the results graphically. This is the default evaluation method. Which data is displayed in the diagram depends on the "Trace" settings. Scaling for the y-axis can be configured.

RF Measurements

SCPI command:

LAY:ADD? '1', RIGH, DIAG, see LAYout:ADD[:WINDow]? on page 204

Result Summary

Result summaries provide the results of specific measurement functions in a table for numerical evaluation. The contents of the result summary vary depending on the selected measurement function. See the description of the individual measurement functions for details.

esult Summary				
Channel	Bandwidth	Offset	Power	
TX1 (Ref)	1.229 MHz		-0.86 dBm	
Tx Total			-0.86 dBm	
Channel	Bandwidth	Offset	Lower	Upper
Adj	30.000 kHz	750.000 kHz	-79.59 dB	-80.34 dB
Alt1	30.000 kHz	1.980 MHz	-85.04 dB	-83.85 dB

SCPI command:

LAY:ADD? '1', RIGH, RSUM, see LAYout: ADD[:WINDow]? on page 204

Marker Table

Displays a table with the current marker values for the active markers.

This table may be displayed automatically if configured accordingly (see "Marker Table Display" on page 117).

2 Marke	r					
Type	Ref	Trc	Stimulus	Response	Function	Function Result
N1		1	13.197 GHz	-25.87 dBm	Count	13.197052
D1	N1	1	-7.942 GHz	-49.41 dB		
D2	N1	2	-3.918 GHz	-21.90 dB		
D3	N1	- 3	4.024 GHz	-21.99 dB		

SCPI command:

LAY: ADD? '1', RIGH, MTAB, see LAYout: ADD[:WINDow]? on page 204

Marker Peak List

The marker peak list determines the frequencies and levels of peaks in the spectrum or time domain. How many peaks are displayed can be defined, as well as the sort order. In addition, the detected peaks can be indicated in the diagram. The peak list can also be exported to a file for analysis in an external application.

2 Marker	Peak List	
No	Stimulus	Response
1	64.400000 MHz	-30.352 dBm
2	128.400000 MHz	-51.896 dBm
3	192.300000 MHz	-40.227 dBm
4	257.200000 MHz	-60.699 dBm
5	320.200000 MHz	-44.273 dBm
6	384.100000 MHz	-53.494 dBm
7	448.100000 MHz	-47.460 dBm
8	513.000000 MHz	-55.603 dBm

SCPI command:

LAY:ADD? '1', RIGH, PEAK, see LAYout:ADD[:WINDow]? on page 204

4 Measurement Basics

Some background knowledge on basic terms and principles used in 3GPP FDD tests and measurements is provided here for a better understanding of the required configuration settings.

Basic principle

The basic principle of 3GPP FDD (frequency division duplex) is that the communication between a base station and several mobile stations is performed in the same frequency band and in the same time slots. The seperation of the data for the different mobile stations is achieved by using CDMA (Code Division Multiple Access). In this technique, channels are distinguished by using different orthogonal codes.

Scrambling codes

Each base station uses a unique scrambling code. The mobile station can only demodulate the base station signal if it knows which scrambling code was used by the base station.

Thus, in order to demodulate the data in the 3GPP FDD applications, you must either specify the scrambling code explicitly, or the application can perform an automatic search to detect the scrambling code itself.

Channels, codes and symbol rate

In signals according to the 3GPP FDD standard, the data is transmitted in channels. These channels are based on orthogonal codes and can have different data rates. The data rate depends on the used modulation type and the spreading factor of the channel.

Spreading factors

Spreading factors determine whether the transmitted data is sent in short or long sequences. The spreading factor is re-assigned dynamically in certain time intervals according to the current demand of users and data to be transmitted. The higher the spreading factor, the lower the data rate; the lower the spreading factor, the higher the data rate.

The smallest available spreading factor is 4, the largest is 512. So we can say that the code domain consists of 512 basic codes. A channel with a lower spreading factor consists of several combined codes. That means a channel can be described by its number and its spreading factor.

The following table shows the relationship between the code class, the spreading factor, the number of codes per channel, and the symbol rate.

Table 4-1: Relationship between code class, spreading factor, codes per channel and symbol rate for 3GPP FDD signals

Code class	Spreading factor	No. codes / chan- nel	Symbol rate
2	4	128	960 ksps
3	8	64	480 ksps

Code class	Spreading factor	No. codes / chan- nel	Symbol rate
4	16	32	240 ksps
5	32	16	120 ksps
6	64	8	60 ksps
7	128	4	30 ksps
8	256	2	15 ksps
9	512	1	7.5 ksps

In the measurement settings and results, the spreading factor is often represented by the corresponding symbol rate (in kilo symbols per second, ksps). The power of a channel is always measured in relation to its symbol rate (or spreading factor).

In the 3GPP FDD applications, the channel number consists of the used spreading factor and the channel's sequential number in the code domain, assuming the code domain is divided into equal divisions:

<sequence number>.<spreading factor>

Example:

For a channel number of 5.32, for example, imagine a code domain of 512 codes with a scale of 16 codes per division. Each division represents a possible channel with spreading factor 32. Since channel numbering starts at 0, channel number 5 is the sixth division on the scale.

Selected codes and channels

In the result displays that refer to channels, the currently selected channel is highlighted in the diagram. You select a channel by entering a channel number and spreading factor in the "Evaluation Range" settings. In the example above, if you select the channel number 5.32, the sixth division on the scale with 16 codes per division is highlighted.

For the display in the 3GPP FDD applications, the scale for code-based diagrams contains 512 divisions, one for each code. The selected channel in the example (5.32) would thus correspond to codes 80-96. (The division starts at 5*16=80 and is 16 codes wide.)

If no spreading factor is given for the channel number, the default factor 512 is assumed. Channel number 5 would thus refer to the sixth division on the scale, which is the sixth code in the code domain. If the code belongs to a detected channel, the entire channel is highlighted.

If the selected channel is not active, only the first code belonging to the corresponding division is highlighted. In the example, for the inactive channel number 5.32, the first code in the sixth division on the scale with 16 codes per division is highlighted. That corresponds to code number 80 with the scale based on 512 divisions.

Special channels - PCCPCH, SCH, CPICH, DPCH

In order to control the data transmission between the sender and the receiver, specific symbol must be included in the transmitted data, for example the scrambling code of the sender or the used spreading factor, as well as synchronization data for different channels. This data is included in special data channels defined by the 3GPP standard which use fixed codes in the code domain. Thus, they can be detected easily by the receiver.

The **P**rimary **C**ommon **C**ontrol **P**hysical **Ch**annel (PCCPCH) must always be contained in the signal. As the name implies, it is responsible for common control of the channels during transmission.

The **S**ynchronization **Ch**annel (SCH) is a time reference and responsible for synchronizing the individual channels.

Another important channel is the **C**ommon **Pi**lot **Ch**annel (CPICH), which continuously transmits the sender's scrambling code. This channel is used to identify the sender, but also as a reference in 3GPP FDD signal measurements.

The user data is contained in the Dedicated Physical Channel (DPCH).

More details on channel types are provided in chapter 4.2, "BTS Channel Types", on page 43.

Chips, frames and slots

The user data is spread across the available bandwidth using the spreading factor before transmission. The spreaded bits are referred to as "chips".

A time span of 10 ms is also known as a "frame". A frame is a basic time unit in the transmission process. Each frame is divided into 15 time "slots". Various channel parameters are put in relation to frames or the individual slots in the 3GPP standard, as well as some measurement results for 3GPP FDD signals. A slot contains 2560 chips.

Channel slots versus CPICH slots

The time slots of the individual channels may not be absolutely synchronous. A time offset may occur, so that the slots in a data channel are slightly shifted in relation to the CPICH slots, for example. In the 3GPP FDD BTS application, the CPICH slot number is provided as a reference with the measurement settings in the channel bar. In the Result Summary, the actual slot number of the evaluated channel is indicated as the "Channel Slot No".

Pilot symbols

Some slots contain a fixed sequence of symbols, referred to as "pilot symbols". These pilot symbols allow the receiver to identify a particular channel, if the unique pilot symbols can be detected in the input signal.

Power control

While the spreading factors are adjusted for each frame, i.e. every 10 ms, the power levels for transmission must be adapted to the current requirements (such as interference) much more dynamically. Thus, power control bits are transmitted in each slot, allowing for much higher change rates. As the CPICH channel continuously transmits the

same data, the power level need not be adapted. Thus, the power control bits can lead to a timing offset between the CPICH slots and other channel slots.

4.1 Channel Detection

The 3GPP FDD applications provide two basic methods of detecting active channels:

Automatic search using pilot sequences

The application performs an automatic search for active (DPCH) channels throughout the entire code domain. The search is based on the presence of known symbol sequences (pilot symbols) in the despread symbols of a channel. A data channel is considered to be active if the pilot symbols as specified by the 3GPP FDD standard are found at the end of each slot. In this mode, channels without or with incomplete pilot symbols are therefore not recognized as being active.

An exception to this rule is seen in the special channels PICH and SCCPCH, which can be recognized as active in the automatic search mode although they do not contain pilot symbols. Optionally, all QPSK-modulated channels can also be recognized without pilot symbols (see "HSDPA/UPA" on page 60).

In addition, the channel must exceed a minimum power in order to be considered active (see "Inactive Channel Threshold (BTS measurements only)" on page 88). In UE measurements, a channel is considered to be active if a minimum signal/noise ratio is maintained within the channel.

• Comparison with predefined channel tables

The input signal is compared to a predefined channel table. All channels that are included in the predefined channel table are considered to be active.

4.2 BTS Channel Types

The 3GPP FDD standard defines various BTS channel types. Some channels are mandatory and must be contained in the signal, as they have control or synchronization functions. Thus, these channels always occupy a specific channel number and use a specific symbol rate by which they can be identified.

Control and synchronization channels

The 3GPP FDD BTS application expects the following control and synchronization channels for the Code Domain Power measurements:

Channel type	Description		
PSCH	Primary Synchronization Channel		
	The Primary Synchronization Channel is used to synchronize the signal in the case of SCH synchronization. It is a non-orthogonal channel. Only the power of this channel is determined.		
SSCH	Secondary Synchronization Channel		
	The Secondary Synchronization Channel is a non-orthogonal channel. Only the power of this channel is determined.		
РССРСН	Primary Common Control Physical Channel		
	The Primary Common Control Physical Channel is also used to synchronize the signal in the case of SCH synchronization. It is expected at code class 8 and code number 1.		
SCCPCH	Secondary Common Control Physical Channel		
	 The Secondary Common Control Physical Channel is a QPSK-modulated channel without any pilot symbols. In the 3GPP test models, this channel can be found in code class 8 and code number 3. However, the code class and code number need not be fixed and can vary. For this reason, the following rules are used to indicate the SCCPCH. Only one QPSK-modulated channel without pilot symbols is detected and displayed as the SCCPCH. Any further QPSK-modulated channels without pilot symbols are not detected as active channels. If the signal contains more than one channel without pilot symbols, the channel that is received in the highest code class and with the lowest code number is displayed as the SCCPCH. It is expected that only one channel of this type is included in the received signal. According to this assumption, this channel is probably the SCCPCH. If the application is configured to recognize all QPSK-modulated channels without pilot symbols (see "HSDPA/UPA" on page 60), and one of these channels is received at code class 8 and code number 3, it is displayed as the SCCPCH. 		
СРІСН	Common Pilot Channel		
	The Common Pilot Channel is used to synchronize the signal in the case of CPICH synchronization. It is expected at code class 8 and code number 0.		
	If it is not contained in the signal configuration, the firmware application must be con- figured to sychronize to the SCH channel (see "Synchronization Type" on page 86).		

 Table 4-2: Common 3GPP FDD BTS control channels and their usage

Other channels are optional and contain the user data to be transmitted. A data channel is any channel that does not have a predefined channel number and symbol rate. The following channel types can be detected by the 3GPP FDD BTS application.

Channel type	Description	
PICH	Paging Indication Channel	
	The Paging Indication Channel is expected at code class 8 and code number 16.	
	The lower part of the table indicates the data channels contained in the signal. A data channel is any channel that does not have a predefined channel number and symbol rate. There are different types of data channels, which are indicated in the column "Chan Type".	
DPCH	Dedicated Physical Channel of a standard frame	
	The Dedicated Physical Channel is a data channel that contains pilot symbols. The displayed channel type is DPCH.	

Measurement Basics

BTS Channel Types

Channel type	Description
CPRSD	Dedicated Physical Channel (DPCH) in compressed mode
	Compressed mode channels usually do not transmit valid symbols in all slots. Then are different lengths of the transmitting gap. One to fourteen slots can be switched off in each frame. In some cases outside the gap the symbol rate is increased by 2 to ensure a constant average symbol rate of this channel. In any case all of the trans mitted slots contain a pilot sequence defined in the 3GPP specification. There are different types of compressed mode channels.
	To evaluate compressed mode channels, the associated measurement mode need to be activated (see "Compressed Mode" on page 61).
CPR-TPC	DPCH in c om pres se d mode where TPC symbols are sent in the first slot of the transmitting gap
CPR-SF/2	DPCH in c om pressed mode using half spreading factor (SF/2) to increase the symbol rate of the active slots by two
CPR-SF/2-TPC	DPCH in compressed mode using half spreading factor (SF /2) to increase the symbol rate of the active slots by two, where TPC symbols are sent in the first slot of the transmitting gap
HS-PDSCH	HSDPA: High Speed Physical Downlink Shared Channel
	The High Speed Physical Downlink Shared Channel (HSDPA) does not contain an pilot symbols. It is a channel type that is expected in code classes lower than 7. The modulation type of these channels can vary depending on the selected slot.
	HSPDSCH-QPSK_: QPSK-modulated slot of an HS PDSCH channel
	HSPDSCH-16QAM_: 16QAM-modulated slot of an HS PDSCH channel
	HSPDSCH-NONE_: slot without power of an HS PDSCH channel
HS-SCCH	HSDPA: High Speed Shared Control Channel
	The High Speed Shared Control Channel (HSDPA) does not contain any pilot symbols. It is a channel type that is expected in code classes equal to or higher than 7. The modulation type should always be QPSK. The channel does not contain any pilot symbols.
	If the application is configured to recognize all QPSK-modulated channels without pilot symbols (see "HSDPA/UPA" on page 60), the channels of HSDPA will be four among the data channels. If the type of a channel can be fully recognized, as for example with a DPCH (based on pilot sequences) or HS-PDSCH (based on modulation type), the type is entered in the field TYPE. All other channels without pilot symbols are of type CHAN. The channels are in descending order according to symbol rates and, within a symbol rate, in ascending order according to the channel numbers. There-fore, the unassigned codes are always to be found at the end of the table
	If the modulation type for a channel can vary, the measured value of the modulation type will be appended to the type of the channel.
EHICH-ERGCH	HSUPA:
	Enhanced HARQ Hybrid Acknowledgement Indicator Channel
	Enhanced Relative Grant Channel
EAGCH	Enhanced Absolute Grant Channel
SCPICH	Secondary Common Pilot Channel
CHAN	If the application is configured to recognize all QPSK-modulated channels without pilot symbols (see "HSDPA/UPA" on page 60), all QPSK-modulated channels without pilot symbols and a code class higher than or equal to 7 are marked with the channel type CHAN.

MIMO channel types

Optionally, single antenna MIMO measurement channels can also be detected. In this case, HS-PDSCH channels with exclusively QPSK or exclusively 16 QAM on both transport streams are automatically detected and demodulated. The corresponding channel types are denoted as "HS-MIMO-QPSK" and "HS-MIMO-16QAM".

The MIMO constellations resulting on a single antenna consist of three amplitudes per dimension (-1, 0, 1) in the case of QPSK x QPSK, and seven amplitudes per dimension (-3, -2, -1, 0, 1, 2, 3) in the case of 16 QAM x 16 QAM. The symbol decisions of these constellations can be retrieved via the bitstream output. The mapping between bits and constellation points is given by the following table.

Constellation point (normalized)	Bit sequence
0,0	0,1,0,1
1,0	0,1,0,0
-1,0	0,1,1,1
0,1	0,0,0,1
1,1	0,0,0,0
-1,1	0,0,1,1
0,-1	1,1,0,1
1,-1	1,1,0,0
-1,-1	1,1,1,1

Table 4-4: Mapping between bits and constellation points for MIMO-QPSK

For MIMO-16QAM, the bit sequence is the same in both I and Q. Only one dimension is given here.

Table 4-5: Mapping between bits and constellation points for MIMO-16QAM

Constellation point (normalized)	Bit sequence
-3	1,1,1
-2	1,1,0
-1	1,0,0
0	1,0,1
1	0,0,1
2	0,0,0
3	0,1,0

4.3 UE Channel Types

The following channel types can be detected in 3GPP FDD uplink signals by the 3GPP FDD UE application.

Control channels

The 3GPP FDD UE application expects the following control channels for the Code Domain Power measurements:

Table 4-6: Common 3GPP FDD UE control channels and their usage

Channel type	Description
DPCCH	The D edicated P hysical C ontrol C hannel is used to synchronize the signal. It carries pilot symbols and is expected in the Q branch at code class 8 with code number 0. This channel must be contained in every channel table.
HSDPCCH	The High Speed Dedicated Physical Control Channel (for HS-DCH) is used to carry control information (CQI/ACK/NACK) for downlink high speed data channels (HS-DCH). It is used in HSDPA signal setup. The symbol rate is fixed to 15ksps. The code allocation depends on the number of active DPCH. The HS-DPCCH can be switched on or off after the duration of 1/5 frame or 3 slots or 2ms. Power control is applicable too.
EDPCCH	The Enhanced Dedicated Physical Control Channel is used to carry control infor- mation for uplink high speed data channels (EDPDCH). It is used in HSUPA signal setup. The symbol rate is fixed to 15ksps.

Other channels are optional and contain the user data to be transmitted. A data channel is any channel that does not have a predefined channel number and symbol rate.

The following channel types can be detected by the 3GPP FDD UE application:

Table 4-7: Common 3GPP FDD UE data channels and their usage

Channel type	Description
DPDCH	The D edicated P hysical D ata Ch annel is used to carry UPLINK data from the UE to the BS. The code allocation depends on the total required symbol rate.
EDPDCH	The Enhanced Dedicated Physical Data Channel is used to carry UPLINK data for high speed channels (EDPDCH). It is used in HSUPA signal setup. The symbol rate and code allocation depends on the number of DPDCH and HS-DPCCH.

As specified in 3GPP, the channel table can contain up to 6 DPDCHs or up to 4 E-DPDCHs.

4.4 3GPP FDD BTS Test Models

For measurements on base-station signals in line with 3GPP, test models with different channel configurations are specified in the document "Base station conformance testing (FDD)" (3GPP TS 25.141 V5.7.0). An overview of the test models is provided here.

Table 4-8: Test model 1

Channel type	Number of chan- nels	Power (%)	Level (dB)	Spreading code	Timing offset (×256Tchip)
PCCPCH+SCH	1	10	-10	1	0
Primary CPICH	1	10	-10	0	0

3GPP FDD BTS Test Models

Channel type	Number of chan- nels	Power (%)	Level (dB)	Spreading code	Timing offset (×256Tchip)
PICH	1	1.6	-18	16	120
SCCPCH (SF=256)	1	1.6	-18	3	0
DPCH (SF=128)	16/32/64	76.8 total	see TS 25.141	see TS 25.141	see TS 25.141

Table 4-9: Test model 2

Channel type	Number of chan- nels	Power (%)	Level (dB)	Spreading code	Timing offset (x256Tchip)
PCCPCH+SCH	1	10	-10	1	0
Primary CPICH	1	10	-10	0	0
PICH	1	5	-13	16	120
SCCPCH (SF=256)	1	5	-13	3	0
DPCH (SF=128)	3	2 × 10, 1 × 50	2 × -10, 1 × -3	24, 72, 120	1, 7, 2

Table 4-10: Test model 3

Channel type	Number of chan- nels	Power (%) 16/32	Level (dB) 16/32	Spreading code	Timing offset (×256Tchip)
PCCPCH+SCH	1	12.6/7.9	-9/-11	1	0
Primary CPICH	1	12.6/7.9	-9/-11	0	0
PICH	1	5/1.6	-13/-18	16	120
SCCPCH (SF=256)	1	5/1.6	-13/-18	3	0
DPCH (SF=256)	16/32	63,7/80,4 total	see TS 25.141	see TS 25.141	see TS 25.141

Table 4-11: Test model 4

Channel type	Number of chan- nels	Power (%) 16/32	Level (dB) 16/32	Spreading code	Timing offset (×256Tchip)
PCCPCH+SCH	1	50 to 1.6	-3 to -18	1	0
Primary CPICH*	1	10	-10	0	0

Table 4-12: Test model 5

Channel type	Number of channels	Power (%)	Level (dB)	Spreading code	Timing offset (×256Tchip)
PCCPCH+SCH	1	7.9	-11	1	0
Primary CPICH	1	7.9	-11	0	0
PICH	1	1.3	-19	16	120

Channel type	Number of channels	Power (%)	Level (dB)	Spreading code	Timing offset (×256Tchip)
SCCPCH (SF=256)	1	1.3	-19	3	0
DPCH (SF=256)	30/14/6	14/14.2/14.4 total	see TS 25.141	see TS 25.141	see TS 25.141
HS_SCCH	2	4 total	see TS 25.141	see TS 25.141	see TS 25.141
HS_PDSCH (16QAM)	8/4/2	63.6/63.4/63.2 total	see TS 25.141	see TS 25.141	see TS 25.141

4.5 Setup for Base Station Tests

This section describes how to set up the analyzer for 3GPP FDD BTS tests. As a prerequisite for starting the test, the instrument must be correctly set up and connected to the AC power supply as described in the R&S FSW Getting Started manual. Furthermore, the 3GPP FDD BTS application must be available.

Standard Test Setup

Connect the antenna output (or TX output) of the BTS to the RF input of the analyzer via a power attenuator of suitable attenuation.
 The following values are recommended for the external attenuator to ensure that the RF input of the analyzer is protected and the sensitivity of the analyzer is not reduced too much.

Max. power	Recommended ext. attenuation
≥55 to 60 dBm	35 to 40 dB
≥50 to 55 dBm	30 to 35 dB
≥45 to 50 dBm	25 to 30 dB
≥40 to 45 dBm	20 to 25 dB
≥35 to 40 dBm	15 to 20 dB
≥30 to 35 dBm	10 to 15 dB
≥25 to 30 dBm	5 to 10 dB
≥20 to 25 dBm	0 to 5 dB
<20 dBm	0 dB

- For signal measurements at the output of two-port networks, connect the reference frequency of the signal source to the rear reference input of the analyzer (EXT REF IN/OUT).
- To ensure that the error limits specified by the 3GPP standard are met, the analyzer should use an external reference frequency for frequency measurements on base

stations. For instance, a rubidium frequency standard may be used as a reference source.

• If the base station is provided with a trigger output, connect this output to the trigger input of the analyzer.

Presetting

Configure the R&S FSW as follows:

- Set the external attenuation (Reference level offset).
- Set the reference level.
- Set the center frequency.
- Set the trigger.
- Select the BTS standard and measurement.

4.6 3GPP FDD UE Test Models

The possible channel configurations for the mobile station signal are limited by 3GPP. Only two different configurations for data channels DPDCH are permissible according to the specification. In addition to these two channel configurations, the HS-DPCCH channel can be transmitted to operate the mobile station in HSDPA mode. Thus, the 3GPP FDD UE application checks for these channel configurations only during the automatic channel search. Therefore, channels whose parameters do not correspond to one of these configurations are not automatically detected as active channels.

The two possible channel configurations are summarized below:

Table 4-13: Channel configuration 1	1: DPCCH and 1 DPDCH
-------------------------------------	----------------------

Channel type	Number of chan- nels	Symbol rate	Spreading code(s)	Mapping
DPCCH	1	15 ksps	0	Q
DPDCH	1	15 ksps – 960 ksps	[spreading-factor/ 4]	1

Channel type	Number of channels	Symbol rate	Spreading code(s)	Mapping
DPCCH	1	15 ksps	0	Q
DPDCH	1	960 ksps	1	1
DPDCH	1	960 ksps	1	Q
DPDCH	1	960 ksps	3	1
DPDCH	1	960 ksps	3	Q
DPDCH	1	960 ksps	2	1
DPDCH	1	960 ksps	2	Q

Number of DPDCH	Symbol rate all DPDCH	Symbol rate HS-DPCCH	Spreading code HS-DPCCH	Mapping (HS-DPCCH)
1	15 – 960 ksps	15 ksps	64	Q
2	1920 ksps	15 ksps	1	1
3	2880 ksps	15 ksps	32	Q
4	3840 ksps	15 ksps	1	1
5	4800 ksps	15 ksps	32	Q
6	5760 ksps	15 ksps	1	1

Table 4-15: Channel configuration 3: DPCCH, up to 6 DPDCH and 1 HS-DPCCH The channel configuration is as above in table 4-2. On HS-DPCCH is added to each channel table.

Table 4-16: Channelization code of HS-DPCCH

Nmax-dpdch (as defined in subclause 4.2.1)	Channelization code C _{ch}
1	C _{ch,256,64}
2,4,6	C _{ch,256,1}
3,5	C _{ch,256,32}

4.7 Setup for User Equipment Tests

This section describes how to set up the analyzer for 3GPP FDD UE user equipment tests. As a prerequisite for starting the test, the instrument must be correctly set up and connected to the AC power supply as described in the R&S FSW Getting Started manual. Furthermore, the 3GPP FDD UE application must be properly installed following the instructions provided in the operating manual for the analyzer.

Standard Test Setup

 Connect antenna output (or TX output) of UE to RF input of the analyzer via a power attenuator of suitable attenuation.

The following values are recommended for the external attenuator to ensure that the RF input of the analyzer is protected and the sensitivity of the analyzer is not reduced too much.

Max. power	Recommended ext. attenuation
³ 55 to 60 dBm	35 to 40 dB
³ 50 to 55 dBm	30 to 35 dB
³ 45 to 50 dBm	25 to 30 dB
³ 40 to 45 dBm	20 to 25 dB
³ 35 to 40 dBm	15 to 20 dB
³ 30 to 35 dBm	10 to 15 dB

CDA Measurements in MSRA Operating Mode

Max. power	Recommended ext. attenuation
³ 25 to 30 dBm	5 to 10 dB
³ 20 to 25 dBm	0 to 5 dB
<20 dBm	0 dB

- For signal measurements at the output of two-port networks, connect the reference frequency of the signal source to the external reference input connector of the R&S FSW (REF INPUT).
- To ensure that the error limits specified by the 3GPP standard are met, the R&S FSW should use an external reference frequency for frequency measurements on user equipment. For instance, a rubidium frequency standard may be used as a reference source.
- If the user equipment is provided with a trigger output, connect this output to one of the TRIGGER INPUT connectors of the R&S FSW.

Presetting

Configure the R&S FSW as follows:

- Set the external attenuation (Reference level offset).
- Set the reference level.
- Set the center frequency.
- Set the trigger.
- Select the UE standard and measurement.

4.8 CDA Measurements in MSRA Operating Mode

The 3GPP FDD BTS application can also be used to analyze data in MSRA operating mode.

In MSRA operating mode, only the MSRA Master actually captures data; the MSRA applications receive an extract of the captured data for analysis, referred to as the **application data**. For the 3GPP FDD BTS application in MSRA operating mode, the application data range is defined by the same settings used to define the signal capture in Signal and Spectrum Analyzer mode. In addition, a capture offset can be defined, i.e. an offset from the start of the captured data to the start of the analysis interval for the 3GPP FDD BTS measurement.

Data coverage for each active application

Generally, if a signal contains multiple data channels for multiple standards, separate applications are used to analyze each data channel. Thus, it is of interest to know which application is analyzing which data channel. The MSRA Master display indicates the data covered by each application, restricted to the channel bandwidth used by the corresponding standard (for 3GPP FDD: 5 MHz), by vertical blue lines labeled with the application name.

Analysis interval

However, the individual result displays of the application need not analyze the complete data range. The data range that is actually analyzed by the individual result display is referred to as the **analysis interval**.

In the 3GPP FDD BTS application the analysis interval is automatically determined according to the selected channel, slot or frame to analyze which is defined for the evaluation range, depending on the result display. The analysis interval can not be edited directly in the 3GPP FDD BTS application, but is changed automatically when you change the evaluation range.

For details on the MSRA operating mode see the R&S FSW MSRA User Manual.

5 Configuration

The 3GPP FDD applications provide several different measurements for signals according to the 3GPP FDD application. The main and default measurement is Code Domain Analysis. Furthermore, a Time Alignment Error measurement is provided. In addition to the code domain power measurements specified by the 3GPP standard, the 3GPP FDD options offer measurements with predefined settings in the frequency domain, e.g. RF power measurements.

Only one measurement type can be configured per channel; however, several channels with 3GPP FDD applications can be configured in parallel on the R&S FSW. Thus, you can configure one channel for a Code Domain Analysis, for example, and another for a Time Alignment Error or Power measurement for the same input signal. Then you can use the Sequencer to perform all measurements consecutively and switch through the results easily, or monitor all results at the same time in the "MultiView" tab.

For details on the Sequencer function see the R&S FSW User Manual.

Selecting the measurement type

When you activate an 3GPP FDD application, Code Domain Analysis of the input signal is started automatically. However, the 3GPP FDD applications also provide other measurement types.

- ► To select a different measurement type, do one of the following:
 - Tap the "Overview" softkey. In the "Overview", tap the "Select Measurement" button. Select the required measurement.
 - Press the MEAS key on the front panel. In the "Select Measurement" dialog box, select the required measurement.

- RF Measurements.....101

5.1 Result Display

The captured signal can be displayed using various evaluation methods. All evaluation methods available for 3GPP FDD applications are displayed in the evaluation bar in SmartGrid mode when you do one of the following:

- Select the I "SmartGrid" icon from the toolbar.
- Select the "Display" button in the "Overview".
- Press the MEAS key.
- Select the "Display Config" softkey in any 3GPP FDD menu.

Up to 16 evaluation methods can be displayed simultaneously in separate windows. The 3GPP FDD evaluation methods are described in chapter 3.1.2, "Evaluation Methods for Code Domain Analysis", on page 15.

To close the SmartGrid mode and restore the previous softkey menu select the X "Close" icon in the righthand corner of the toolbar, or press any key on the front panel.

For details on working with the SmartGrid see the R&S FSW Getting Started manual.

5.2 Code Domain Analysis and Time Alignment Error Measurements

3GPP FDD measurements require special applications on the R&S FSW, which you activate using the MODE key on the front panel.

When you activate a 3GPP FDD application the first time, a set of parameters is passed on from the currently active application:

- center frequency and frequency offset
- reference level and reference level offset
- attenuation

After initial setup, the parameters for the measurement channel are stored upon exiting and restored upon re-entering the channel. Thus, you can switch between applications quickly and easily.

When you activate a 3GPP FDD application, Code Domain Analysis of the input signal is started automatically with the default configuration. The "Code Domain Analyzer" menu is displayed and provides access to the most important configuration functions.

The "Span", "Bandwidth", "Lines", and "Marker Functions" menus are not available in CDMA2000 applications.

Code Domain Analysis can be configured easily in the "Overview" dialog box, which is displayed when you select the "Overview" softkey from any menu.

Time Alignment Error measurement

Time Alignment Error measurements are only available in the 3GPP FDD BTS application.

To perform a Time Alignment Error measurement, you must change the measurement type. Do one of the following:

- Tap the "Overview" softkey. In the "Overview", tap the "Select Measurement" button. Select the Time Alignment Error measurement.
- Press the MEAS key on the front panel. In the "Select Measurement" dialog box, select the Time Alignment Error measurement.

Importing and Exporting I/Q Data

The I/Q data to be evaluated for 3GPP FDD can not only be measured by the 3GPP FDD applications themselves, it can also be imported to the applications, provided it has the correct format. Furthermore, the evaluated I/Q data from the 3GPP FDD applications can be exported for further analysis in external applications.

The import and export functions are available in the "Save/Recall" menu which is displayed when you select the 🔳 "Save" or 🖻 "Open" icon in the toolbar.

For details on importing and exporting I/Q data see the R&S FSW User Manual.

5.2.1	Default Settings for Code Domain Analysis	57
5.2.2	Configuration Overview	
5.2.3	Signal Description	
5.2.3.1	BTS Signal Description	60
5.2.3.2	BTS Scrambling Code	61
5.2.3.3	UE Signal Description (UE Measurements)	63
5.2.4	Data Input and Output Settings	64
5.2.4.1	Input Settings	64
5.2.4.2	Data Output	68
5.2.4.3	Digital I/Q Output Settings	71
5.2.5	Frontend Settings	72
5.2.5.1	Amplitude Settings	72
5.2.5.2	Y-Axis Scaling	76
5.2.5.3	Frequency Settings	76
5.2.6	Trigger Settings	
5.2.7	Signal Capture (Data Acquisition)	83
5.2.8	Application Data (MSRA)	85
5.2.9	Synchronization (BTS Measurements Only)	85
5.2.10	Channel Detection	87
5.2.10.1	General Channel Detection Settings	
5.2.10.2	Channel Table Management	
5.2.10.3	Channel Table Settings and Functions	91
5.2.10.4	Channel Details (BTS Measurements)	
5.2.10.5	Channel Details (UE Measurements)	

5.2.11	Sweep Settings	96
	Automatic Settings	
5.2.13	Zoom Functions	.100

5.2.1 Default Settings for Code Domain Analysis

When you activate a 3GPP FDD application the first time, a set of parameters is passed on from the currently active application:

- center frequency and frequency offset
- reference level and reference level offset
- attenuation
- signal source and digital I/Q input settings
- input coupling
- YIG filter state

After initial setup, the parameters for the measurement channel are stored upon exiting and restored upon re-entering the channel. Thus, you can switch between applications quickly and easily.

Apart from these settings, the following default settings are activated directly after a 3GPP FDD application is activated, or after a Preset Channel:

The following default settings of the Code Domain Analysis are activated:

Parameter	Value
Digital standard	W-CDMA 3GPP FWD (BTS measurements) W-CDMA 3GPP REV (UE measurements)
Sweep	CONTINUOUS
Channel detection mode	AUTOSEARCH
Trigger settings	FREE RUN
Trigger offset	0
Scrambling code	0
Threshold value	-60 dB
Symbol rate	15 ksps
Code number	0
Slot number	0
Evaluations	Window 1: Code Domain Power Relative Window 2: Result Summary

Table 5-1: Default settings for 3GPP FDD channels

5.2.2 Configuration Overview

Throughout the measurement channel configuration, an overview of the most important currently defined settings is provided in the "Overview". The "Overview" is displayed when you select the "Overview" icon, which is available at the bottom of all softkey menus.

In addition to the main measurement settings, the "Overview" provides quick access to the main settings dialog boxes. Thus, you can easily configure an entire measurement channel from input over processing to evaluation by stepping through the dialog boxes as indicated in the "Overview".

The available settings and functions in the "Overview" vary depending on the currently selected measurement. For RF measurements see chapter 5.3, "RF Measurements", on page 101.

For Code Domain Analysis and Time Alignment Error measurements, the "Overview" provides quick access to the following configuration dialog boxes (listed in the recommended order of processing):

- "Select Measurement" See chapter 3, "Measurements and Result Display", on page 12
- "Signal Description" See chapter 5.2.3, "Signal Description", on page 59
- "Input/ Frontend" See chapter 5.2.4, "Data Input and Output Settings", on page 64
- (Optionally:) "Trigger/Gate" See chapter 5.2.6, "Trigger Settings", on page 78
- 5. "Signal Capture"

See chapter 5.2.7, "Signal Capture (Data Acquisition)", on page 83

- (BTS measurements only): "Synchronization" See chapter 5.2.9, "Synchronization (BTS Measurements Only)", on page 85
- "Channel Detection" See chapter 5.2.10, "Channel Detection", on page 87
- 8. "Analysis" See chapter 6, "Analysis", on page 106
- "Display Configuration" See chapter 3.1.2, "Evaluation Methods for Code Domain Analysis", on page 15 and "Evaluation Methods" on page 31

To configure settings

Select any button in the "Overview" to open the corresponding dialog box. Select a setting in the channel bar (at the top of the measurement channel tab) to change a specific setting.

Preset Channel

Select the "Preset Channel" button in the lower lefthand corner of the "Overview" to restore all measurement settings **in the current channel** to their default values.

Note that the PRESET key on the front panel restores all measurements in all measurement channels on the R&S FSW to their default values!

See chapter 5.2.1, "Default Settings for Code Domain Analysis", on page 57 for details.

SCPI command:

SYSTem:PRESet:CHANnel[:EXECute] on page 143

Select Measurement

Selects a different measurement to be performed.

See chapter 3, "Measurements and Result Display", on page 12.

Specifics for

The measurement channel may contain several windows for different results. Thus, the settings indicated in the "Overview" and configured in the dialog boxes vary depending on the selected window.

Select an active window from the "Specifics for" selection list that is displayed in the "Overview" and in all window-specific configuration dialog boxes.

The "Overview" and dialog boxes are updated to indicate the settings for the selected window.

5.2.3 Signal Description

The signal description provides information on the expected input signal.

5.2.3.1 BTS Signal Description

The settings available to describe the input signal in BTS measurements are described here.

Signal Description	
Signal Description	Scrambling Code
Common	
HSDPA/UPA	On Off
Compressed Mode	On Off
МІМО	On Off
Antenna Diversity	
State	On Off
Antenna Number	1 2

HSDPA/UPA	60
Compressed Mode	61
MIMO	61
Antenna Diversity	61
Antenna Number	61

HSDPA/UPA

If enabled, the application detects all QPSK-modulated channels without pilot symbols (HSDPA channels) and displays them in the channel table. If the type of a channel can be fully recognized, as for example with a HS-PDSCH (based on modulation type), the type is indicated in the table. All other channels without pilot symbols are of type "CHAN".

SCPI command: [SENSe:]CDPower:HSDPamode on page 146

Compressed Mode

If compressed mode is switched on, some slots of a channel are suppressed. To keep the overall data rate, the slots just before or just behind a compressed gap can be sent with half spreading factor (SF/2). This mode must be enabled to detect compressed mode channels (see chapter 4.2, "BTS Channel Types", on page 43).

SCPI command:

[SENSe:]CDPower:PCONtrol on page 148

MIMO

Activates or deactivates single antenna MIMO measurement mode.

If activated, HS-PDSCH channels with exclusively QPSK or exclusively 16 QAM on both transport streams are automatically detected and demodulated. The corresponding channel types are denoted as "HS-MIMO-QPSK" and "HS-MIMO-16QAM", respectively.

For details see "MIMO channel types" on page 46.

SCPI command: [SENSe:]CDPower:MIMO on page 148

Antenna Diversity

This option switches the antenna diversity mode on and off.

SCPI command: [SENSe:]CDPower:ANTenna on page 146

Antenna Number

This option switches between diversity antennas 1 and 2. Depending on the selected setting, the 3GPP FDD application synchronizes to the CPICH of antenna 1 or antenna 2.

SCPI command: [SENSe:]CDPower:ANTenna on page 146

5.2.3.2 BTS Scrambling Code

The scrambling code identifies the base station transmitting the signal. You can either define the used scrambling code manually, or perform a search on the input signal to detect a list of possible scrambling codes automatically.

Signal Description Scrambling Code Scrambling Code 0
Scrambling Code 0
Format Hex Dec
Scrambling Code
Code Power
0x0000000 -24.00
Autosearch Export

Scrambling Code	62
Format Hex/Dec	62
Scrambling Codes	62
Autosearch for Scrambling Code	
Export	

Scrambling Code

Defines the scrambling code. The scrambling codes are used to distinguish between different base stations. Each base station has its own scrambling code.

SCPI command:

[SENSe:]CDPower:LCODe:DVALue on page 149

Format Hex/Dec

Switch the display format of the scrambling codes between hexadecimal and decimal.

SCPI command:

[SENSe:]CDPower:LCODe:DVALue on page 149 [SENSe:]CDPower:LCODe[:VALue] on page 149

Scrambling Codes

This table includes all found scrambling codes from the last autosearch sequence. In the first column each detected scrambling code can be selected for export.

SCPI command:

[SENSe:]CDPower:LCODe:SEARch:LIST? on page 147

Autosearch for Scrambling Code

Starts a search on the measured signal for all scrambling codes. The scrambling code that leads to the highest signal power is chosen as the new scrambling code.

Searching requires that the correct center frequency and level are set. The scrambling code search can automatically determine the primary scrambling code number. The secondary scrambling code number is expected as 0. Alternative scrambling codes can not be detected. Therefore the range for detection is 0x0000 – 0x1FF0h, where the last digit is always 0.

SCPI command:

[SENSe:]CDPower:LCODe:SEARch[:IMMediate]? on page 147

Export

Writes the detected scrambling codes together with their powers into a text file in the R&S user directory (C:\R S\Instr\User\ScrCodes.txt)

5.2.3.3 UE Signal Description (UE Measurements)

The settings available to describe the input signal in UE measurements are described here.

Signal Description	
Scrambling	
Scrambling Code	0
Format	Hex Dec
Туре	Long Short
Signal Settings	
HS-DSP/UPA	On Off

Scrambling Code	63
Format	
Туре	64
HSDPA/UPA	64

Scrambling Code

Defines the scrambling code used to transmit the signal in the specified format.

The scrambling code identifies the user equipment transmitting the signal. If an incorrect scrambling code is defined, a CDP measurement of the signal is not possible.

SCPI command:

[SENSe:]CDPower:LCODe[:VALue] on page 149

Format

Switches the display format of the scrambling codes between hexadecimal and decimal.

SCPI command:

```
SENS:CDP:LCOD:DVAL <numeric value> (see [SENSe:]CDPower:LCODe:
DVALue on page 149)
```

Туре

Defines whether the entered scrambling code is to be handled as a long or short scrambling code.

SCPI command:

[SENSe:]CDPower:LCODe:TYPE on page 150

HSDPA/UPA

If enabled, the application detects all QPSK-modulated channels without pilot symbols (HSDPA channels) and displays them in the channel table. If the type of a channel can be fully recognized, as for example with a HS-PDSCH (based on modulation type), the type is indicated in the table. All other channels without pilot symbols are of type "CHAN".

SCPI command:

[SENSe:]CDPower:HSDPamode on page 146

5.2.4 Data Input and Output Settings

The R&S FSW can analyze signals from different input sources and provide various types of output (such as noise or trigger signals).

•	Input Settings	64
	Data Output	
	Digital I/Q Output Settings	

5.2.4.1 Input Settings

The input signal determines which data the R&S FSW will analyze.

Input settings can be configured via the INPUT/OUTPUT key, in the "Input" dialog box.

Some settings are also available in the "Amplitude" tab of the "Amplitude" dialog box.

Radio Frequency Input

The default input source for the R&S FSW is "Radio Frequency", i.e. the signal at the RF INPUT connector on the front panel of the R&S FSW. If no additional options are installed, this is the only available input source.

Radio Frequency State6	35
Input Coupling	
Impedance	
High-Pass Filter 13 GHz6	
YIG-Preselector	

Radio Frequency State

Activates input from the RF INPUT connector.

SCPI command:

INPut: SELect on page 153

Input Coupling

The RF input of the R&S FSW can be coupled by alternating current (AC) or direct current (DC).

This function is not available for input from the Digital Baseband Interface (R&S FSW-B17).

AC coupling blocks any DC voltage from the input signal. This is the default setting to prevent damage to the instrument. Very low frequencies in the input signal may be distorted.

However, some specifications require DC coupling. In this case, you must protect the instrument from damaging DC input voltages manually. For details, refer to the data sheet.

SCPI command:

INPut:COUPling on page 151

Impedance

The reference impedance for the measured levels of the R&S FSW can be set to 50 Ω or 75 $\Omega.$

75 Ω should be selected if the 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the RAZ type (= 25 Ω in series to the input impedance of the instrument). The correction value in this case is 1.76 dB = 10 log (75 Ω /50 Ω).

This value also affects the unit conversion (see "Reference Level" on page 73).

This function is not available for input from the Digital Baseband Interface (R&S FSW-B17).

SCPI command:

INPut: IMPedance on page 152

High-Pass Filter 1...3 GHz

Activates an additional internal high-pass filter for RF input signals from 1 GHz to 3 GHz. This filter is used to remove the harmonics of the R&S FSW in order to measure the harmonics for a DUT, for example.

This function requires option R&S FSW-B13.

(Note: for RF input signals outside the specified range, the high-pass filter has no effect. For signals with a frequency of approximately 4 GHz upwards, the harmonics are suppressed sufficiently by the YIG filter.)

SCPI command: INPut:FILTer:HPASs[:STATe] on page 152

YIG-Preselector

Activates or deactivates the YIG-preselector.

An internal YIG-preselector at the input of the R&S FSW ensures that image frequencies are rejected. However, this is only possible for a restricted bandwidth. In order to use the maximum bandwidth for signal analysis you can deactivate the YIG-preselector at the input of the R&S FSW, which may lead to image-frequency display.

Note that the YIG-preselector is active only on frequencies greater than 8 GHz. Therefore, switching the YIG-preselector on or off has no effect if the frequency is below that value.

INPut:FILTer:YIG[:STATe] on page 152

Digital I/Q Input Settings

The following settings and functions are available to provide input via the Digital Baseband Interface (R&S FSW-B17) in the applications that support it.

They can be configured via the INPUT/OUTPUT key, in the "Input" dialog box.

Digital I/Q Input State	67
Input Sample Rate	67
Full Scale Level	67
Adjust Reference Level to Full Scale Level	68
Connected Instrument	68
DiglConf	68

Digital I/Q Input State

Enables or disable the use of the "Digital IQ" input source for measurements. "Digital IQ" is only available if the Digital Baseband Interface (R&S FSW-B17) is installed.

SCPI command:

INPut: SELect on page 153

Input Sample Rate

Defines the sample rate of the digital I/Q signal source. This sample rate must correspond with the sample rate provided by the connected device, e.g. a generator.

If "Auto" is selected, the sample rate is adjusted automatically by the connected device.

The allowed range is from 100 Hz to 10 GHz.

SCPI command:

INPut:DIQ:SRATe on page 156
INPut:DIQ:SRATe:AUTO on page 157

Full Scale Level

The "Full Scale Level" defines the level and unit that should correspond to an I/Q sample with the magnitude "1".

If "Auto" is selected, the level is automatically set to the value provided by the connected device.

SCPI command:

```
INPut:DIQ:RANGe[:UPPer] on page 156
INPut:DIQ:RANGe[:UPPer]:UNIT on page 156
INPut:DIQ:RANGe:AUTO on page 155
```

Adjust Reference Level to Full Scale Level

If enabled, the reference level is adjusted to the full scale level automatically if any change occurs.

SCPI command: INPut:DIQ:RANGe:COUPling on page 156

Connected Instrument

Displays the status of the Digital Baseband Interface connection.

If an instrument is connected, the following information is displayed:

- Name and serial number of the instrument connected to the Digital Baseband Interface
- Used port
- Sample rate of the data currently being transferred via the Digital Baseband Interface
- Level and unit that corresponds to an I/Q sample with the magnitude "1" (Full Scale Level), if provided by connected instrument

SCPI command:

INPut:DIQ:CDEVice on page 154

DiglConf

Starts the optional R&S DiglConf application. This softkey is available in the In-/Output menu, but only if the optional software is installed.

Note that R&S DiglConf requires a USB connection (not LAN!) from the R&S FSW to the R&S EX-IQ-BOX in addition to the Digital Baseband Interface (R&S FSW-B17) connection. R&S DiglConf version 2.20.360.86 Build 170 or higher is required.

To return to the R&S FSW application, press any key on the front panel. The R&S FSW application is displayed with the "Input/Output" menu, regardless of which key was pressed.

For details on the R&S DigIConf application, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DigIConf Software Operating Manual".

Note: If you close the R&S DigIConf window using the "Close" icon, the window is minimized, not closed.

If you select the "File > Exit" menu item in the R&S DigIConf window, the application is closed. Note that in this case the settings are lost and the EX-IQ-BOX functionality is no longer available until you restart the application using the "DigIConf" softkey in the R&S FSW once again.

5.2.4.2 Data Output

The R&S FSW can provide output to special connectors for other devices.

For details on connectors refer to the R&S FSW Getting Started manual, "Front / Rear Panel View" chapters.

A

How to provide trigger signals as output is described in detail in the R&S FSW User Manual.

Output settings can be configured via the INPUT/OUTPUT key or in the "Outputs" dialog box.

	Output	
ľ	Output Digital IQ	
	IF/Video Output	IF Video
	IF Out Frequency	50.0 MHz
	Noise Source	On Off
	Trigger 2	Input Output
	Trigger 3	Input Output

Noise Source	69
Trigger 2/3	69
L Output Type	70
L Level	70
L Pulse Length	
L Send Trigger	70

Noise Source

Switches the supply voltage for an external noise source on or off.

External noise sources are useful when you are measuring power levels that fall below the noise floor of the R&S FSW itself, for example when measuring the noise level of a DUT.

SCPI command:

DIAGnostic<n>:SERVice:NSOurce on page 161

Trigger 2/3

Defines the usage of the variable TRIGGER INPUT/OUTPUT connectors, where:

"Trigger 2": TRIGGER INPUT/OUTPUT connector on the front panel

"Trigger 3": TRIGGER 3 INPUT/ OUTPUT connector on the rear panel

(Trigger 1 is INPUT only.)

Note: Providing trigger signals as output is described in detail in the R&S FSW User Manual.

- "Input" The signal at the connector is used as an external trigger source by the R&S FSW. No further trigger parameters are available for the connector.
- "Output" The R&S FSW sends a trigger signal to the output connector to be used by connected devices. Further trigger parameters are available for the connector.

i ultiler trigger parameters are available it

SCPI command:

OUTPut:TRIGger<port>:LEVel on page 174

OUTPut: TRIGger<port>: DIRection on page 174

Output Type ← Trigger 2/3

Type of signal to be sent to the output

"Device Trig- (Default) Sends a trigger when the R&S FSW triggers.

- gered"
- "Trigger Sends a (high level) trigger when the R&S FSW is in "Ready for trig-Armed" ger" state.

This state is indicated by a status bit in the STATUS: OPERation register (bit 5), as well as by a low level signal at the AUX port (pin 9).

"User Defined" Sends a trigger when user selects "Send Trigger" button. In this case, further parameters are available for the output signal.

SCPI command:

OUTPut:TRIGger<port>:OTYPe on page 175

Level ← Output Type ← Trigger 2/3

Defines whether a constant high (1) or low (0) signal is sent to the output connector.

SCPI command:

OUTPut:TRIGger<port>:LEVel on page 174

Pulse Length \leftarrow Output Type \leftarrow Trigger 2/3

Defines the length of the pulse sent as a trigger to the output connector.

SCPI command:

OUTPut:TRIGger<port>:PULSe:LENGth on page 176

Send Trigger \leftarrow Output Type \leftarrow Trigger 2/3

Sends a user-defined trigger to the output connector immediately. Note that the trigger pulse level is always opposite to the constant signal level defined by the output "Level" setting, e.g. for "Level = High", a constant high signal is output to the connector until the "Send Trigger" button is selected. Then, a low pulse is sent.

Which pulse level will be sent is indicated by a graphic on the button.

SCPI command:

OUTPut:TRIGger<port>:PULSe:IMMediate on page 175

5.2.4.3 Digital I/Q Output Settings

The optional Digital Baseband Interface (R&S FSW-B17) allows you to output I/Q data from any R&S FSW application that processes I/Q data to an external device. The configuration settings for digital I/Q output can be configured via the INPUT/OUTPUT key or in the "Outputs" dialog box.

Output Meas Time 31.281	μs SRate 32.0 MHz
Output Digital IQ	nn RBWA 125 KHZ
Digital Baseband Output	On Off
Output Settings	
Max Sample Rate:	100 MHz
Sample Rate:	32 MHz
Full Scale Level:	0 dBm
Connected Instrument	
Device Name:	SMBV100A
Serial Number:	257374
Port Name:	Dig BB In
<u></u>	
a bhliain bha bha bha bha bha	silitisht üdenle isi bil bitric at but i con

For details on digital I/Q output see the R&S FSW I/Q Analyzer User Manual.

Digital Baseband Output	71
Output Settings Information	
Connected Instrument	72

Digital Baseband Output

Enables or disables a digital output stream to the optional Digital Baseband Interface (R&S FSW-B17), if available.

For details on digital I/Q output see the R&S FSW I/Q Analyzer User Manual.

SCPI command:

OUTPut: DIQ on page 157

Output Settings Information

Displays information on the settings for output via the Digital Baseband Interface (R&S FSW-B17).

The following information is displayed:

- Maximum sample rate that can be used to transfer data via the Digital Baseband Interface (i.e. the maximum input sample rate that can be processed by the connected instrument)
- Sample rate currently used to transfer data via the Digital Baseband Interface
- Level and unit that corresponds to an I/Q sample with the magnitude "1" (Full Scale Level)

SCPI command:

OUTPut:DIQ:CDEVice on page 157

Connected Instrument

Displays information on the instrument connected to the Digital Baseband Interface (R&S FSW-B17), if available.

If an instrument is connected, the following information is displayed:

- Name and serial number of the instrument connected to the Digital Baseband Interface
- Used port

SCPI command:

OUTPut:DIQ:CDEVice on page 157

5.2.5 Frontend Settings

Frequency, amplitude and y-axis scaling settings represent the "frontend" of the measurement setup.

٠	Amplitude Settings	72
	Y-Axis Scaling	
٠	Frequency Settings	76

5.2.5.1 Amplitude Settings

Amplitude settings determine how the R&S FSW must process or display the expected input power levels.

To configure the amplitude settings

Amplitude settings can be configured via the AMPT key or in the "Amplitude" dialog box.

- To display the "Amplitude" dialog box, do one of the following:
 - Select "Input/Frontend" from the "Overview" and then switch to the "Amplitude" tab.
 - Select the AMPT key and then the "Amplitude Config" softkey.

Amplitude				
Reference Lev	rel	Input Settings		
Value	0.0 dBm	Preamplifier	On	off
Offset	0.0 dB	Input Coupling	AC	DC
Unit	dBm ÷	Impedance	50Ω	75Ω
Mechanical Attenuation		Electronic Attenua	ation	
Mode	Manual Auto	State	Off	On
		Mode	Manual	Auto
Value	10.0 dB	Value	0.0 dB	

Reference Level	73
L Shifting the Display (Offset)	73
L Unit	
L Setting the Reference Level Automatically (Auto Level)	74
RF Attenuation	
L Attenuation Mode / Value	74
Using Electronic Attenuation (Option B25)	75
Input Settings	75
L Preamplifier (option B24)	

Reference Level

Defines the expected maximum reference level. Signal levels above this value may not be measured correctly, which is indicated by the "IFOVL" status display.

The reference level is also used to scale power diagrams; the reference level is then used as the maximum on the y-axis.

Since the R&S FSW hardware is adapted according to this value, it is recommended that you set the reference level close above the expected maximum signal level to ensure an optimum measurement (no compression, good signal-to-noise ratio).

Note that the "Reference Level" value ignores the Shifting the Display (Offset). It is important to know the actual power level the R&S FSW must handle.

SCPI command:

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:RLEVel on page 165

Shifting the Display (Offset) ← Reference Level

Defines an arithmetic level offset. This offset is added to the measured level irrespective of the selected unit. The scaling of the y-axis is changed accordingly.

Define an offset if the signal is attenuated or amplified before it is fed into the R&S FSW so the application shows correct power results. All displayed power level results will be shifted by this value.

Note, however, that the Reference Level value ignores the "Reference Level Offset". It is important to know the actual power level the R&S FSW must handle.

To determine the required offset, consider the external attenuation or gain applied to the input signal. A positive value indicates that an attenuation took place (R&S FSW increases the displayed power values), a negative value indicates an external gain (R&S FSW decreases the displayed power values).

The setting range is ±200 dB in 0.01 dB steps.

SCPI command:

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:RLEVel:OFFSet on page 165

Unit ← Reference Level

For CDA measurements the unit should not be changed, as this would lead to useless results.

Setting the Reference Level Automatically (Auto Level) ← Reference Level

Automatically determines the optimal reference level for the current input data. At the same time, the internal attenuators and the preamplifier are adjusted so the signal-to-noise ratio is optimized, while signal compression, clipping and overload conditions are minimized.

In order to do so, a level measurement is performed to determine the optimal reference level.

You can change the measurement time for the level measurement if necessary (see "Changing the Automatic Measurement Time (Meastime Manual)" on page 99).

SCPI command:

[SENSe:]ADJust:LEVel on page 196

RF Attenuation

Defines the attenuation applied to the RF input.

This function is not available for input from the Digital Baseband Interface (R&S FSW-B17).

The RF attenuation can be set automatically as a function of the selected reference level (Auto mode). This ensures that the optimum RF attenuation is always used. It is the default setting. By default and when Using Electronic Attenuation (Option B25) is not available, mechanical attenuation is applied.

This function is not available for input from the **Digital Baseband Interface (R&S FSW-B17)**.

In "Manual" mode, you can set the RF attenuation in 1 dB steps (down to 0 dB, also using the rotary knob). Other entries are rounded to the next integer value. The range is specified in the data sheet. If the defined reference level cannot be set for the defined RF attenuation, the reference level is adjusted accordingly and the warning "Limit reached" is displayed.

NOTICE! Risk of hardware damage due to high power levels. When decreasing the attenuation manually, ensure that the power level does not exceed the maximum level allowed at the RF input, as an overload may lead to hardware damage.

SCPI command:

INPut:ATTenuation on page 167
INPut:ATTenuation:AUTO on page 167

Using Electronic Attenuation (Option B25)

If option R&S FSW-B25 is installed, you can also activate an electronic attenuator.

In "Auto" mode, the settings are defined automatically; in "Manual" mode, you can define the mechanical and electronic attenuation separately.

This function is not available for input from the Digital Baseband Interface (R&S FSW-B17).

Note: Electronic attenuation is not available for stop frequencies (or center frequencies in zero span) >13.6 GHz.

In "Auto" mode, RF attenuation is provided by the electronic attenuator as much as possible to reduce the amount of mechanical switching required. Mechanical attenuation may provide a better signal-to-noise ratio, however.

When you switch off electronic attenuation, the RF attenuation is automatically set to the same mode (auto/manual) as the electronic attenuation was set to. Thus, the RF attenuation may be set to automatic mode, and the full attenuation is provided by the mechanical attenuator, if possible.

Both the electronic and the mechanical attenuation can be varied in 1 dB steps. Other entries are rounded to the next lower integer value.

If the defined reference level cannot be set for the given attenuation, the reference level is adjusted accordingly and the warning "Limit reached" is displayed in the status bar.

SCPI command:

INPut: EATT: STATe on page 168 INPut: EATT: AUTO on page 168 INPut: EATT on page 167

Input Settings

Some input settings affect the measured amplitude of the signal, as well.

The parameters "Input Coupling" and "Impedance" are identical to those in the "Input" settings, see chapter 5.2.4.1, "Input Settings", on page 64.

Preamplifier (option B24) ← Input Settings

If option R&S FSW-B24 is installed, a preamplifier can be activated for the RF input signal. This function is not available for input from the Digital Baseband Interface (R&S FSW-B17).

For R&S FSW 26 models, the input signal is amplified by 30 dB if the preamplifier is activated.

For R&S FSW 8 or 13 models, the following settings are available:

"Off" Deactivates the preamplifier.

"15 dB" The RF input signal is amplified by about 15 dB.

"30 dB" The RF input signal is amplified by about 30 dB.

SCPI command:

INPut:GAIN:STATe on page 165
INPut:GAIN[:VALue] on page 166

5.2.5.2 Y-Axis Scaling

The vertical axis scaling is configurable. In Code Domain Analysis, the y-axis usually displays the measured power levels.

Amplitude
Scale
Y Maximum 0.0 dB
Y Minimum -70.0 dB
Auto Scale Once
Specifics for 1: Code Domain Power 🗧

Y-Maximum,	, Y-Minimum	76
Auto Scale C	Dnce	76

Y-Maximum, Y-Minimum

Defines the amplitude range to be displayed on the y-axis of the evaluation diagrams.

SCPI command:

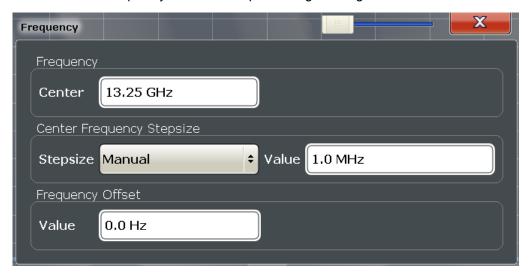
```
DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:MAXimum on page 164
DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:MINimum on page 164
```

Auto Scale Once

Automatically determines the optimal range and reference level position to be displayed for the current measurement settings.

The display is only set once; it is not adapted further if the measurement settings are changed again.

SCPI command:


DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:AUTO ONCE on page 164

5.2.5.3 Frequency Settings

Frequency settings for the input signal can be configured via the "Frequency" dialog box, which is displayed when you do one of the following:

Select the FREQ key and then the "Frequency Config" softkey.

Select the "Frequency" tab in the "Input Settings" dialog box

Center	
Center Frequency Stepsize	
Frequency Offset	

Center

Defines the normal center frequency of the signal. The allowed range of values for the center frequency depends on the frequency span.

span > 0: span_{min}/2 $\leq f_{center} \leq f_{max} - span_{min}/2$

f_{max} and span_{min} are specified in the data sheet.

SCPI command: [SENSe:]FREQuency:CENTer on page 162

Center Frequency Stepsize

Defines the step size by which the center frequency is increased or decreased when the arrow keys are pressed. When you use the rotary knob the center frequency changes in steps of only 1/10 of the "Center Frequency Stepsize".

The step size can be coupled to another value or it can be manually set to a fixed value.

This setting is available for RF measurements.

- "X * Span" Sets the step size for the center frequency to a defined factor of the span. The "X-Factor" defines the percentage of the span. Values between 1 and 100 % in steps of 1 % are allowed. The default setting is 10 %.
- "= Center" Sets the step size to the value of the center frequency. The used value is indicated in the "Value" field.
- "Manual" Defines a fixed step size for the center frequency. Enter the step size in the "Value" field.

SCPI command:

[SENSe:]FREQuency:CENTer:STEP on page 162

Frequency Offset

Shifts the displayed frequency range along the x-axis by the defined offset.

This parameter has no effect on the R&S FSW hardware, or on the captured data or on data processing. It is simply a manipulation of the final results in which absolute frequency values are displayed. Thus, the x-axis of a spectrum display is shifted by a constant offset if it shows absolute frequencies, but not if it shows frequencies relative to the signal's center frequency.

A frequency offset can be used to correct the display of a signal that is slightly distorted by the measurement setup, for example.

The allowed values range from -100 GHz to 100 GHz. The default setting is 0 Hz.

SCPI command:

[SENSe:]FREQuency:OFFSet on page 163

5.2.6 Trigger Settings

Trigger settings determine when the input signal is measured.

Trigger settings can be configured via the TRIG key or in the "Trigger" dialog box, which is displayed when you select the "Trigger" button in the "Overview".

Trigger		9		
Trigger Source	Trigger In/Out			
Source	Free Run 🗘			
Level		Drop-Out Time	0.0 s	
Offset	0.0 s	Slope	Rising Falling	
Hysteresis	3.0 dB	Holdoff	0.0 s	

External triggers from one of the TRIGGER INPUT/OUTPUT connectors on the R&S FSW are configured in a separate tab of the dialog box.

For step-by-step instructions on configuring triggered measurements, see the main R&S FSW User Manual.

Trigger Source	79
L Trigger Source	79
L Free Run	
L External Trigger 1/2/3	80
L Digital I/Q	
L Trigger Level	
L Drop-Out Time	
L Trigger Offset	81
L Hysteresis	81
L Trigger Holdoff	81
L Slope	
L Capture Offset	
Trigger 2/3.	
L Output Type	
L Level	
L Pulse Length	
L Send Trigger	

Trigger Source

The trigger settings define the beginning of a measurement.

Trigger Source ← Trigger Source

Defines the trigger source. If a trigger source other than "Free Run" is set, "TRG" is displayed in the channel bar and the trigger source is indicated.

SCPI command: TRIGger[:SEQuence]:SOURce on page 172

Free Run ← Trigger Source ← Trigger Source

No trigger source is considered. Data acquisition is started manually or automatically and continues until stopped explicitly.

SCPI command:

TRIG:SOUR IMM, see TRIGger[:SEQuence]:SOURce on page 172

External Trigger 1/2/3 ← Trigger Source ← Trigger Source

Data acquisition starts when the TTL signal fed into the specified input connector (on the front or rear panel) meets or exceeds the specified trigger level.

(See "Trigger Level" on page 81).

Note: The "External Trigger 1" softkey automatically selects the trigger signal from the TRIGGER INPUT connector on the front panel.

For details see the "Instrument Tour" chapter in the R&S FSW Getting Started manual.

"External Trigger 1"

Trigger signal from the TRIGGER INPUT connector on the front panel.

"External Trigger 2"

Trigger signal from the TRIGGER INPUT/OUTPUT connector on the front panel.

Note: Connector must be configured for "Input" in the "Outputs" configuration (see "Trigger 2/3" on page 69).

"External Trigger 3"

Trigger signal from the TRIGGER 3 INPUT/ OUTPUT connector on the rear panel.

Note: Connector must be configured for "Input" in the "Outputs" configuration (see "Trigger 2/3" on page 69).

SCPI command:

TRIG:SOUR EXT, TRIG:SOUR EXT2, TRIG:SOUR EXT3
See TRIGger[:SEQuence]:SOURce on page 172

Digital I/Q ← Trigger Source ← Trigger Source

For applications that process I/Q data, such as the I/Q Analyzer or optional applications, and only if the Digital Baseband Interface (R&S FSW-B17) is available:

Defines triggering of the measurement directly via the LVDS connector. In the selection list you must specify which general purpose bit (GP0 to GP5) will provide the trigger data.

The following table describes the assignment of the general purpose bits to the LVDS connector pins.

(For details on the LVDS connector see the R&S FSW I/Q Analyzer User Manual.)

Table 5-2: Assignment of general purpose bits to LVDS connector pins

Bit	LVDS pin
GP0	SDATA4_P - Trigger1
GP1	SDATA4_P - Trigger2
GP2	SDATA0_P - Reserve1
GP3	SDATA4_P - Reserve2

Bit	LVDS pin
GP4	SDATA0_P - Marker1
GP5	SDATA4_P - Marker2

SCPI command:

TRIG:SOUR GP0, see TRIGger[:SEQuence]:SOURce on page 172

Trigger Level ← Trigger Source

Defines the trigger level for the specified trigger source.

For details on supported trigger levels, see the data sheet.

SCPI command:

TRIGger[:SEQuence]:LEVel[:EXTernal<port>] on page 170

Defines the time the input signal must stay below the trigger level before triggering again. SCPI command:

TRIGger[:SEQuence]:DTIMe on page 169

Trigger Offset - Trigger Source

Defines the time offset between the trigger event and the start of the sweep.

offset > 0:	Start of the sweep is delayed
offset < 0:	Sweep starts earlier (pre-trigger)

SCPI command:

TRIGger[:SEQuence]:HOLDoff[:TIME] on page 169

Defines the distance in dB to the trigger level that the trigger source must exceed before a trigger event occurs. Settting a hysteresis avoids unwanted trigger events caused by noise oscillation around the trigger level.

This setting is only available for "IF Power" trigger sources. The range of the value is between 3 dB and 50 dB with a step width of 1 dB.

SCPI command:

TRIGger[:SEQuence]:IFPower:HYSTeresis on page 170

Trigger Holdoff ← Trigger Source

Defines the minimum time (in seconds) that must pass between two trigger events. Trigger events that occur during the holdoff time are ignored.

SCPI command:

TRIGger[:SEQuence]:IFPower:HOLDoff on page 170

For all trigger sources except time you can define whether triggering occurs when the signal rises to the trigger level or falls down to it.

SCPI command:

TRIGger[:SEQuence]:SLOPe on page 172

This setting is only available for applications in **MSRA operating mode**. It has a similar effect as the trigger offset in other measurements: it defines the time offset between the capture buffer start and the start of the extracted application data. The offset must be a positive value, as the application can only analyze data that is contained in the capture buffer.

SCPI command:

[SENSe:]MSRA:CAPTure:OFFSet on page 251

Trigger 2/3

Defines the usage of the variable TRIGGER INPUT/OUTPUT connectors, where:

"Trigger 2": TRIGGER INPUT/OUTPUT connector on the front panel

"Trigger 3": TRIGGER 3 INPUT/ OUTPUT connector on the rear panel

(Trigger 1 is INPUT only.)

Note: Providing trigger signals as output is described in detail in the R&S FSW User Manual.

- "Input" The signal at the connector is used as an external trigger source by the R&S FSW. No further trigger parameters are available for the connector.
- "Output" The R&S FSW sends a trigger signal to the output connector to be used by connected devices.

Further trigger parameters are available for the connector.

SCPI command:

OUTPut:TRIGger<port>:LEVel on page 174 OUTPut:TRIGger<port>:DIRection on page 174

Output Type ← Trigger 2/3

Type of signal to be sent to the output

"Device Trig- gered"	(Default) Sends a trigger when the R&S FSW triggers.
"Trigger Armed"	Sends a (high level) trigger when the R&S FSW is in "Ready for trig- ger" state.
	This state is indicated by a status bit in the STATUS:OPERation reg- ister (bit 5), as well as by a low level signal at the AUX port (pin 9).
"User Defined"	Sends a trigger when user selects "Send Trigger" button. In this case, further parameters are available for the output signal.

SCPI command:

OUTPut:TRIGger<port>:OTYPe on page 175

Level ← Output Type ← Trigger 2/3

Defines whether a constant high (1) or low (0) signal is sent to the output connector.

SCPI command:

OUTPut:TRIGger<port>:LEVel on page 174

Pulse Length \leftarrow Output Type \leftarrow Trigger 2/3

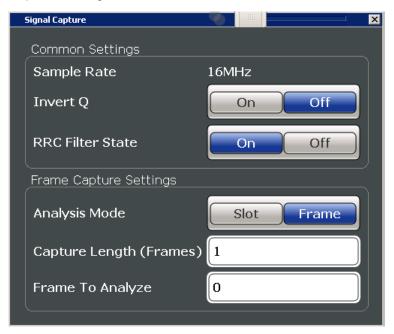
Defines the length of the pulse sent as a trigger to the output connector.

SCPI command:

OUTPut:TRIGger<port>:PULSe:LENGth on page 176

Send Trigger \leftarrow Output Type \leftarrow Trigger 2/3

Sends a user-defined trigger to the output connector immediately. Note that the trigger pulse level is always opposite to the constant signal level defined by the output "Level" setting, e.g. for "Level = High", a constant high signal is output to the connector until the "Send Trigger" button is selected. Then, a low pulse is sent.


Which pulse level will be sent is indicated by a graphic on the button.

SCPI command:

OUTPut: TRIGger <port>: PULSe: IMMediate on page 175

5.2.7 Signal Capture (Data Acquisition)

How much and how data is captured from the input signal are defined in the "Signal Capture" settings.

MSRA operating mode

In MSRA operating mode, only the MSRA Master channel actually captures data from the input signal. The data acquisition settings for the 3GPP FDD BTS application in MSRA mode define the **application data extract**. See chapter 5.2.8, "Application Data (MSRA)", on page 85.

For details on the MSRA operating mode see the R&S FSW MSRA User Manual.

Sample Rate	84
Invert Q	
RRC Filter State	
Analysis Mode (UE measurements only)	84
Capture Length (Frames)	
Capture Offset.	
Frame To Analyze	

Sample Rate

The sample rate is always 16 MHz (indicated for reference only).

Invert Q

Inverts the sign of the signal's Q-branch. The default setting is OFF.

SCPI command:

[SENSe:]CDPower:QINVert on page 177

RRC Filter State

Selects if a root raised cosine (RRC) receiver filter is used or not. This feature is useful if the RRC filter is implemented in the device under test (DUT).

"ON" If an unfiltered WCDMA signal is received (normal case), the RRC filter should be used to get a correct signal demodulation. (Default settings)

"OFF" If a filtered WCDMA signal is received, the RRC filter should not be used to get a correct signal demodulation. This is the case if the DUT filters the signal.

SCPI command:

[SENSe:]CDPower:FILTer[:STATe] on page 177

Analysis Mode (UE measurements only)

Captures a single slot or one complete frame.

SCPI command:

[SENSe:]CDPower:BASE on page 176

Capture Length (Frames)

Defines the capture length (amount of frames to record).

Note: if this setting is not available in UE tests, Analysis Mode (UE measurements only) is set to "Slot", i.e. only one slot is captured.

SCPI command:

[SENSe:]CDPower:IQLength on page 177

Capture Offset

This setting is only available for applications in **MSRA operating mode**. It has a similar effect as the trigger offset in other measurements: it defines the time offset between the capture buffer start and the start of the extracted application data. The offset must be a positive value, as the application can only analyze data that is contained in the capture buffer.

SCPI command:

[SENSe:]MSRA:CAPTure:OFFSet on page 251

Frame To Analyze

Defines the frame to be analyzed and displayed.

Note: if this setting is not available in UE tests, Analysis Mode (UE measurements only) is set to "Slot", i.e. only one slot is captured.

SCPI command:

[SENSe:]CDPower:FRAMe[:VALue] on page 197

5.2.8 Application Data (MSRA)

For the 3GPP FDD BTS application in MSRA operating mode, the application data range is defined by the same settings used to define the signal capturing in Signal and Spectrum Analyzer mode (see chapter 5.2.7, "Signal Capture (Data Acquisition)", on page 83.

In addition, a capture offset can be defined, i.e. an offset from the start of the captured data to the start of the analysis interval for the 3GPP FDD BTS measurement (see "Capture Offset" on page 82).

The **analysis interval** cannot be edited manually, but is determined automatically according to the selected channel, slot or frame to analyze which is defined for the evaluation range, depending on the result display. Note that the frame/slot/channel is analyzed *within the application data*.

5.2.9 Synchronization (BTS Measurements Only)

For BTS tests, the individual channels in the input signal need to be synchronized to detect timing offsets in the slot spacings. These settings are described here.

Synchronization
Synchronize to CPICH SCH
Antenna1 Antenna2
CPICH Mode P-CPICH S-CPICH
S-CPICH Code Nr 0
S-CPICH Antenna Pattern 1 2

Synchronization Type	86
Antenna1 / Antenna2	86
L CPICH Mode	
L S-CPICH Code Nr	
S-CPICH Antenna Pattern	

Synchronization Type

Defines whether the signal is synchronized to the CPICH or the synchronization channel (SCH).

- "CPICH" The 3GPP FDD application assumes that the CPICH control channel is present in the signal and attempts to synchronize to this channel. If the signal does not contain CPICH, synchronization fails.
- "SCH" The 3GPP FDD application synchronizes to the signal without assuming the presence of a CPICH. This setting is required for measurements on test model 4 without CPICH. While this setting can also be used with other channel configurations, it should be noted that the probability of synchronization failure increases with the number of data channels.

SCPI command:

[SENSe:]CDPower:STYPe on page 178

Antenna1 / Antenna2

Synchronization is configured for each diversity antenna individually, on separate tabs.

The 3GPP FDD standard defines two different CPICH patterns for diversity antenna 1 and antenna 2. The CPICH pattern used for synchronization can be defined depending on the antenna (standard configuration), or fixed to either pattern, independantly of the antenna (user-defined configuration).

SCPI command:

[SENSe:]CDPower:ANTenna on page 146

CPICH Mode ← Antenna1 / Antenna2

Defines whether the common pilot channel (CPICH) is defined by its default position or a user-defined position.

"P-CPICH" Standard configuration (CPICH is always on channel 0)

"S-CPICH" User-defined configuration. Enter the CPICH code number in the S-CPICH Code Nr field.

SCPI command:

[SENSe:]CDPower:UCPich[:STATe] on page 179

S-CPICH Code Nr ← Antenna1 / Antenna2

If a user-defined CPICH definition is to be used, enter the code of the CPICH based on the spreading factor 256. Possible values are 0 to 255.

SCPI command: [SENSe:]CDPower:UCPich:CODE on page 179

S-CPICH Antenna Pattern

Defines the pattern used for evaluation. SCPI command: [SENSe:]CDPower:UCPich:PATTern on page 179

5.2.10 Channel Detection

The channel detection settings determine which channels are found in the input signal.

Inactive Channel Threshold	-60.0 dB	
Predefined Channel Tables		
Use Predefined Channel Table	Predefined	AutoSearch
Compare Meas Signal with Predefined Table	On	Off
Show Timing Offset	O Relative to	
	Relative to	
Predefined Tables		New
3GB_1_16		New
3GB_1_16 3GB_1_32		
GB_1_16 GB_1_32 GB_1_64 GB_1_64 GB_2		New Edit
3GB_1_16 3GB_1_32 3GB_1_64 3GB_2 3GB_3_16		Edit
3GB_1_16 3GB_1_32 3GB_1_64 3GB_2 3GB_3_16 3GB_3_32		
3GB_1_16 3GB_1_32 3GB_1_64 3GB_2 3GB_3_16		Edit
3GB_1_16 3GB_1_32 3GB_1_64 3GB_2 3GB_3_16 3GB_3_32		Edit
3GB_1_16 3GB_1_32 3GB_1_64 3GB_2 3GB_3_16 3GB_3_32		Edit

•	General Channel Detection Settings	88
	Channel Table Management	
	Channel Table Settings and Functions	
	Channel Details (BTS Measurements)	
	Channel Details (UE Measurements)	
-		

5.2.10.1 General Channel Detection Settings

Channel detection settings are configured in the "Channel Detection" dialog box which is displayed when you select the "Channel Detection" button in the configuration "Overview".

Channel Detection	
Inactive Channel Threshold -60.0 dB	
Predefined Channel Tables	
Use Predefined Channel Table Predefine	d AutoSearch
Compare Meas Signal On On	Off
Show Timing Offset O Relative	
Relative	
Predefined Tables	New
3GB_1_32 ≡ 3GB_1_64 3GB_2	Edit
GB_3_16 GB_3_32 GB_4 •	Сору
	Delete
Select	Restore Default

Inactive Channel Threshold (BTS measurements only)	
Using Predefined Channel Tables	89
Comparing the Measurement Signal with the Predefined Channel Table	
Timing Offset Reference	

Inactive Channel Threshold (BTS measurements only)

Defines the minimum power that a single channel must have compared to the total signal in order to be recognized as an active channel.

SCPI command:

[SENSe:]CDPower:ICTReshold on page 182

Using Predefined Channel Tables

Defines the channel search mode.

"Predefined" Compares the input signal to the predefined channel table selected in the "Predefined Tables" list

"Auto" Detects channels automatically using pilot sequences

SCPI command:

BTS measurements:

CONFigure:WCDPower[:BTS]:CTABle[:STATe] on page 183 UE measurements:

CONFigure:WCDPower:MS:CTABle[:STATe] on page 185

Comparing the Measurement Signal with the Predefined Channel Table

If enabled, the 3GPP FDD application compares the measured signal to the predefined channel tables. In the result summary, only the differences to the predefined table settings are displayed.

SCPI command:

CONFigure:WCDPower[:BTS]:CTABle:COMPare on page 181

Timing Offset Reference

Defines the reference for the timing offset of the displayed measured signal.

"Relative to The measured timing offset is shown in relation to the CPICH. CPICH"

"Relative to If the predefined table contains timing offsets, the delta between the Predefined and measured offsets are displayed in the evaluations. Table"

SCPI command:

CONFigure:WCDPower[:BTS]:CTABle:TOFFset on page 182

5.2.10.2 Channel Table Management

Channel tables are managed in the "Channel Detection" dialog box which is displayed when you select the "Channel Detection" button in the configuration "Overview".

Predefined Tables	90
Selecting a Table	90
Creating a New Table	
Editing a Table	
Copying a Table	
Deleting a Table	
Restoring Default Tables	

Predefined Tables

The list shows all available channel tables and marks the currently used table with a checkmark. The currently *focussed* table is highlighted blue.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:CATalog? on page 183 UE measurements: CONFigure:WCDPower:MS:CTABle:CATalog? on page 185

Selecting a Table

Selects the channel table currently focussed in the "Predefined Tables" list and compares it to the measured signal to detect channels.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:SELect on page 185 UE measurements: CONFigure:WCDPower:MS:CTABle:SELect on page 186

Creating a New Table

Creates a new channel table. See chapter 5.2.10.4, "Channel Details (BTS Measurements)", on page 92.

For step-by-step instructions on creating a new channel table, see "To define or edit a channel table" on page 123.

Editing a Table

You can edit existing channel table definitions. The details of the selected channel are displayed in the "Channel Table" dialog box. See chapter 5.2.10.4, "Channel Details (BTS Measurements)", on page 92.

Copying a Table

Copies an existing channel table definition. The details of the selected channel are displayed in the "Channel Table" dialog box. See chapter 5.2.10.4, "Channel Details (BTS Measurements)", on page 92.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:COPY on page 184 UE measurements: CONFigure:WCDPower:MS:CTABle:COPY on page 186

Deleting a Table

Deletes the currently selected channel table after a message is confirmed.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DELete on page 184 UE measurements: CONFigure:WCDPower:MS:CTABle:DELete on page 186

Restoring Default Tables

Restores the predefined channel tables delivered with the instrument.

5.2.10.3 Channel Table Settings and Functions

Some general settings and functions are available when configuring a predefined channel table.

Channel tables are configured in the "Channel Table" dialog box which is displayed when you select the "New", "Copy" or "Edit" buttons for a predefined channel table in the "Channel Detection" dialog box.

Name	91
Comment	
Adding a Channel	91
Deleting a Channel	
Creating a New Channel Table from the Measured Signal (Measure Table)	
Sorting the Table	
Cancelling Configuration	
Saving the Table	

Name

Name of the channel table that will be displayed in the "Predefined Channel Tables" list.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:NAME on page 187 UE measurements: CONFigure:WCDPower:MS:CTABle:NAME on page 188

Comment

Optional description of the channel table. SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:COMMent on page 187 UE measurements: CONFigure:WCDPower:MS:CTABle:COMMent on page 188

Adding a Channel

Inserts a new row in the channel table to define another channel.

Deleting a Channel

Deletes the currently selected channel from the table.

Creating a New Channel Table from the Measured Signal (Measure Table)

Creates a completely new channel table according to the current measurement data.

SCPI command:

BTS measurements:

CONFigure:WCDPower[:BTS]:MEASurement on page 143

UE measurements:

CONFigure:WCDPower:MS:MEASurement on page 144

Sorting the Table

Sorts the channel table entries.

Cancelling Configuration

Closes the "Channel Table" dialog box without saving the changes.

Saving the Table

Saves the changes to the table and closes the "Channel Table" dialog box.

5.2.10.4 Channel Details (BTS Measurements)

Channel details are configured in the "Channel Table" dialog box which is displayed when you select the "New", "Copy" or "Edit" buttons for a predefined channel table in the "Channel Detection" dialog box.

Name	MyTable								Add Channel	
Comment	mment TestTable								Delete Channe	
Channel Type	Symbol Rate	Channel Number	Use TFCI	Timing Offset	Pilot Bits	CDP Relative	State	Conflict		Measure Tabl
CPICH		0				0.000	On			
PCCPCH	15	1				0.000	On			Sort Table
DPCH	7.5	4	Off	0	4	0.000	Off			
DPCH	7.5	4	Off	0		0.000	Off			
DPCH	7.5	4	Off	0	4	0.000	Off			
									=	
										-
										Cancel

Channel Type	
Symbol Rate	
Channel Number (Ch. SF)	
Use TFCI	
Timing Offset	
Pilot Bits	

CDP Relative	
Status	
Conflict	
	•

Channel Type

Type of channel. For a list of possible channel types see chapter 4.2, "BTS Channel Types", on page 43.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABLe:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABLe:DATA on page 190

Symbol Rate

Symbol rate at which the channel is transmitted.

Channel Number (Ch. SF)

Number of channel spreading code (0 to [spreading factor-1])

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABle:DATA on page 190

Use TFCI

Indicates whether the slot format and data rate are determined by the Transport Format Combination Indicator(TFCI).

SCPI command: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189

Timing Offset

Defines a timing offset in relation to the CPICH channel. During evaluation, the detected timing offset can be compared to this setting; only the delta is displayed (see "Timing Offset Reference" on page 89).

SCPI command: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189

Pilot Bits

Number of pilot bits of the channel (only valid for the control channel DPCCH) SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABle:DATA on page 190

CDP Relative

Code domain power (relative to the total power of the signal)

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements:

CONFigure:WCDPower:MS:CTABle:DATA on page 190

Status

Indicates the channel status. Codes that are not assigned are marked as inactive channels.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABle:DATA on page 190

Conflict

Indicates a code domain conflict between channel definitions (e.g. overlapping channels).

5.2.10.5 Channel Details (UE Measurements)

Channel details are configured in the "Channel Table" dialog box which is displayed when you select the "New", "Copy" or "Edit" buttons for a predefined channel table in the "Channel Detection" dialog box.

Name	MyUplink	<table< th=""><th>J</th><th>Add Channel</th></table<>	J	Add Channel				
Comment	UE tests							Delete Channe
Channel Type	Symbol Rate	Channel Number	Mapping	Pilot Bits	CDP Relative	State	Ŀ	Measure Table
DPCCH	15	0	Q	8	0.000	On		0 T . L .
HS-DPCCH	15	64	Q		0.000	Off		Sort Table
DPCH	7.5	4	I		0.000	Off		
EDPCCH	15	1	I		0.000	Off		
DPDCH	15	64	Q	1.77.72	0.000	On		
DPDCH	960	1	I		0.000	Off		
DPDCH	960	3	Q		0.000	Off		
DPDCH	960	3	Í		0.000	Off		
DPDCH	960	2	Q		0.000	Off	=	
DPDCH	960	2	Ī		0.000	Off		
EDPDCH	1920	1	Q		0.000	Off		
EDPDCH	1920	1	I		0.000	Off		
EDPDCH	960	1	Q		0.000	Off		
EDPDCH	960	1	T		0.000	Off		

Channel Type
Symbol Rate
Channel Number (Ch. SF)
Mapping
Pilot Bits
CDP Relative
Status

Channel Type

Type of channel. For a list of possible channel types see chapter 4.2, "BTS Channel Types", on page 43.

SCPI command:

BTS measurements:

CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements:

CONFigure:WCDPower:MS:CTABle:DATA on page 190

Symbol Rate

Symbol rate at which the channel is transmitted.

Channel Number (Ch. SF)

Number of channel spreading code (0 to [spreading factor-1])

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABle:DATA on page 190

Mapping

Branch onto which the channel is mapped (I or Q). The setting is not editable, since the standard specifies the channel assignment for each channel.

Pilot Bits

Number of pilot bits of the channel (only valid for the control channel DPCCH)

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABle:DATA on page 190

CDP Relative

Code domain power (relative to the total power of the signal) SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABLe:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABLe:DATA on page 190

Status

Indicates the channel status. Codes that are not assigned are marked as inactive channels.

SCPI command: BTS measurements: CONFigure:WCDPower[:BTS]:CTABle:DATA on page 189 UE measurements: CONFigure:WCDPower:MS:CTABle:DATA on page 190

5.2.11 Sweep Settings

The sweep settings define how the data is measured.

Continuous Sweep/RUN CONT	96
Single Sweep/ RUN SINGLE.	
Continue Single Sweep	
Refresh	
Sweep/Average Count	

Continuous Sweep/RUN CONT

After triggering, starts the sweep and repeats it continuously until stopped. This is the default setting.

While the measurement is running, the "Continuous Sweep" softkey and the RUN CONT key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again. The results are not deleted until a new measurement is started.

Note: Sequencer. If the Sequencer is active, the "Continuous Sweep" softkey only controls the sweep mode for the currently selected channel; however, the sweep mode only has an effect the next time the Sequencer activates that channel, and only for a channeldefined sequence. In this case, a channel in continuous sweep mode is swept repeatedly. Furthermore, the RUN CONT key on the front panel controls the Sequencer, not individual sweeps. RUN CONT starts the Sequencer in continuous mode.

For details on the Sequencer, see the R&S FSW User Manual.

SCPI command:

INITiate: CONTinuous on page 214

Single Sweep/ RUN SINGLE

After triggering, starts the number of sweeps set in "Sweep Count". The measurement stops after the defined number of sweeps has been performed.

While the measurement is running, the "Single Sweep" softkey and the RUN SINGLE key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again.

Note: Sequencer. If the Sequencer is active, the "Single Sweep" softkey only controls the sweep mode for the currently selected channel; however, the sweep mode only has an effect the next time the Sequencer activates that channel, and only for a channel-defined sequence. In this case, a channel in single sweep mode is swept only once by the Sequencer.

Furthermore, the RUN SINGLE key on the front panel controls the Sequencer, not individual sweeps. RUN SINGLE starts the Sequencer in single mode.

If the Sequencer is off, only the evaluation for the currently displayed measurement channel is updated.

SCPI command:

INITiate[:IMMediate] on page 214

Continue Single Sweep

After triggering, repeats the number of sweeps set in "Sweep Count", without deleting the trace of the last measurement.

While the measurement is running, the "Continue Single Sweep" softkey and the RUN SINGLE key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again.

SCPI command:

INITiate: CONMeas on page 213

Refresh

This function is only available if the Sequencer is deactivated and only for **MSRA appli**cations.

The data in the capture buffer is re-evaluated by the currently active application only. The results for any other applications remain unchanged.

This is useful, for example, after evaluation changes have been made or if a new sweep was performed from another application; in this case, only that application is updated automatically after data acquisition.

SCPI command:

INITiate:REFResh on page 250

Sweep/Average Count

Defines the number of sweeps to be performed in the single sweep mode. Values from 0 to 200000 are allowed. If the values 0 or 1 are set, one sweep is performed. The sweep count is applied to all the traces in all diagrams.

If the trace configurations "Average", "Max Hold" or "Min Hold" are set, this value also determines the number of averaging or maximum search procedures.

In continuous sweep mode, if sweep count = 0 (default), averaging is performed over 10 sweeps. For sweep count =1, no averaging, maxhold or minhold operations are performed.

SCPI command:

[SENSe:]SWEep:COUNt on page 192
[SENSe:]AVERage<n>:COUNt on page 192

5.2.12 Automatic Settings

Some settings can be adjusted by the R&S FSW automatically according to the current measurement settings. In order to do so, a measurement is performed. The duration of this measurement can be defined automatically or manually.

To activate the automatic adjustment of a setting, select the corresponding function in the AUTO SET menu or in the configuration dialog box for the setting, where available.

1

MSRA operating mode

In MSRA operating mode, the following automatic settings are not available, as they require a new data acquisition. However, 3GPP FDD applications cannot perform data acquisition in MSRA operating mode.

Adjusting all Determinable Settings Automatically (Auto All)	98
Setting the Reference Level Automatically (Auto Level)	
Autosearch for Scrambling Code	
Auto Scale Window	
Auto Scale All	
Resetting the Automatic Measurement Time (Meastime Auto)	
Changing the Automatic Measurement Time (Meastime Manual)	
Upper Level Hysteresis	
Lower Level Hysteresis	100

Adjusting all Determinable Settings Automatically (Auto All)

Activates all automatic adjustment functions for the current measurement settings.

This includes:

- "Setting the Reference Level Automatically (Auto Level)" on page 74
- "Autosearch for Scrambling Code" on page 62
- "Auto Scale All" on page 99

SCPI command:

[SENSe:]ADJust:ALL on page 194

Setting the Reference Level Automatically (Auto Level)

Automatically determines the optimal reference level for the current input data. At the same time, the internal attenuators and the preamplifier are adjusted so the signal-to-noise ratio is optimized, while signal compression, clipping and overload conditions are minimized.

In order to do so, a level measurement is performed to determine the optimal reference level.

You can change the measurement time for the level measurement if necessary (see "Changing the Automatic Measurement Time (Meastime Manual)" on page 99).

SCPI command:

[SENSe:]ADJust:LEVel on page 196

Autosearch for Scrambling Code

Starts a search on the measured signal for all scrambling codes. The scrambling code that leads to the highest signal power is chosen as the new scrambling code.

Searching requires that the correct center frequency and level are set. The scrambling code search can automatically determine the primary scrambling code number. The secondary scrambling code number is expected as 0. Alternative scrambling codes can not be detected. Therefore the range for detection is 0x0000 - 0x1FF0h, where the last digit is always 0.

SCPI command:

[SENSe:]CDPower:LCODe:SEARch[:IMMediate]? on page 147

Auto Scale Window

Automatically determines the optimal range and reference level position to be displayed for the *current* measurement settings in the currently selected window. No new measurement is performed.

Auto Scale All

Automatically determines the optimal range and reference level position to be displayed for the *current* measurement settings in all displayed diagrams. No new measurement is performed.

Resetting the Automatic Measurement Time (Meastime Auto)

Resets the measurement duration for automatic settings to the default value.

SCPI command: [SENSe:]ADJust:CONFigure:DURation:MODE on page 195

Changing the Automatic Measurement Time (Meastime Manual)

This function allows you to change the measurement duration for automatic setting adjustments. Enter the value in seconds.

SCPI command:

[SENSe:]ADJust:CONFigure:DURation:MODE on page 195
[SENSe:]ADJust:CONFigure:DURation on page 194

Upper Level Hysteresis

When the reference level is adjusted automatically using the Setting the Reference Level Automatically (Auto Level) function, the internal attenuators and the preamplifier are also adjusted. In order to avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines an upper threshold the signal must exceed (compared to the last measurement) before the reference level is adapted automatically.

SCPI command:

[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer on page 196

Lower Level Hysteresis

When the reference level is adjusted automatically using the Setting the Reference Level Automatically (Auto Level) function, the internal attenuators and the preamplifier are also adjusted. In order to avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines a lower threshold the signal must fall below (compared to the last measurement) before the reference level is adapted automatically.

SCPI command: [SENSe:]ADJust:CONFigure:HYSTeresis:LOWer on page 195

5.2.13 Zoom Functions

The zoom functions are only available from the toolbar.

Single Zoom	
Multiple Zoom	
Restore Original Display	
Deactivating Zoom (Selection mode)	

Single Zoom

A single zoom replaces the current diagram by a new diagram which displays an enlarged extract of the trace. This function can be used repetitively until the required details are visible.

SCPI command:

DISPlay[:WINDow<n>]:ZOOM:STATe on page 211 DISPlay[:WINDow<n>]:ZOOM:AREA on page 210

Multiple Zoom

In multiple zoom mode, you can enlarge several different areas of the trace simultaneously. An overview window indicates the zoom areas in the original trace, while the zoomed trace areas are displayed in individual windows. The zoom area that corresponds to the individual zoom display is indicated in the lower right corner, between the scrollbars.

SCPI command:

```
DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe on page 212
DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:AREA on page 211
```

Restore Original Display

Restores the original display and closes all zoom windows.

SCPI command:

```
DISPlay[:WINDow<n>]:ZOOM:STATe on page 211 (single zoom)
DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe on page 212 (for each
multiple zoom window)
```

Deactivating Zoom (Selection mode)

3

Deactivates zoom mode; tapping the screen no longer invokes a zoom, but selects an object.

SCPI command:

```
DISPlay[:WINDow<n>]:ZOOM:STATe on page 211 (single zoom)
DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe on page 212 (for each
multiple zoom window)
```

5.3 RF Measurements

3GPP FDD measurements require a special application on the R&S FSW, which you activate using the MODE key on the front panel.

When you activate a 3GPP FDD application, Code Domain Analysis of the input signal is started automatically. However, the 3GPP FDD applications also provide various RF measurement types.

Selecting the measurement type

- To select an RF measurement type, do one of the following:
 - Tap the "Overview" softkey. In the "Overview", tap the "Select Measurement" button. Select the required measurement.
 - Press the MEAS key on the front panel. In the "Select Measurement" dialog box, select the required measurement.

Some parameters are set automatically according to the 3GPP standard the first time a measurement is selected (since the last PRESET operation). A list of these parameters is given with each measurement type. The parameters can be changed, but are not reset automatically the next time you re-enter the measurement.

The main measurement configuration menus for the RF measurements are identical to the Spectrum application.

For details refer to "General Measurement Configuration" in the R&S FSW User Manual.

The measurement-specific settings for the following measurements are available in the "Analysis" dialog box (via the "Overview").

•	Channel Power (ACLR) Measurements	102
•	Occupied Bandwidth	102
	Output Power Measurements	

RF Measurements

•	Spectrum Emission Mask	103
•	RF Combi	104
•	CCDF	105

5.3.1 Channel Power (ACLR) Measurements

Channel Power ACLR measurements are performed as in the Spectrum application with the following predefined settings according to 3GPP specifications (adjacent channel leakage ratio).

Table 5-3: Predefined settings for	3GPP FDD ACLR Channel Power measurements

Standard	(BTS measurements only): "Normal" base station
Number of adjacent channels	2

For further details about the ACLR measurements refer to "Measuring Channel Power and Adjacent-Channel Power" in the R&S FSW User Manual.

To restore adapted measurement parameters, the following parameters are saved on exiting and are restored on re-entering this measurement:

- Reference level and reference level offset
- RBW, VBW
- Sweep time
- Span
- Number of adjacent channels
- Fast ACLR mode

The main measurement menus for the RF measurements are identical to the Spectrum application. However, for SEM and ACLR measurements in BTS measurements, an additional softkey is available to select the required standard.

BTS Standard

Switches between Normal mode and Home BS (Home Base Station) mode. Switching this parameter changes the limits according to the specifications.

SCPI command:

CONFigure:WCDPower[:BTS]:STD on page 202

5.3.2 Occupied Bandwidth

The Occupied Bandwidth measurement determines the bandwidth that the signal occupies. The occupied bandwidth is defined as the bandwidth in which – in default settings - 99 % of the total signal power is to be found. The percentage of the signal power to be included in the bandwidth measurement can be changed.

The Occupied Bandwidth measurement is performed as in the Spectrum application with default settings.

Table 5-4: Predefined settings for 3GPP FDD OBW measurements

Setting	Default value
% Power Bandwidth	99 %
Channel bandwidth	3.84 MHz

For further details about the Occupied Bandwidth measurements refer to "Measuring the Occupied Bandwidth" in the R&S FSW User Manual.

To restore adapted measurement parameters, the following parameters are saved on exiting and are restored on re-entering this measurement:

- Reference level and reference level offset
- RBW, VBW
- Sweep time
- Span

5.3.3 Output Power Measurements

The Output Power measurement determines the 3GPP FDD signal channel power.

In order to determine the Output Power, the 3GPP FDD application performs a Channel Power measurement as in the Spectrum application with the following settings:

Table 5-5: Predefined settings for 3GPP FDD Output Channel Power measurements

Standard	W-CDMA 3GPP REV (BTS) / W-CDMA 3GPP FWD (UE)
	By default, the "Normal" base station standard is used. However, you can switch to the "Home" base station standard using the BTS Standard softkey.
Number of adjacent channels	0

5.3.4 Spectrum Emission Mask

The Spectrum Emission Mask measurement determines the power of the 3GPP FDD signal in defined offsets from the carrier and compares the power values with a spectral mask specified by 3GPP.

For further details about the Spectrum Emission Mask measurements refer to "Spectrum Emission Mask Measurement" in the R&S FSW User Manual.

The 3GPP FDD applications perform the SEM measurement as in the Spectrum application with the following settings:

Table 5-6: Predefined settings for 3GPP FDL	SEM measurements
---	------------------

Standard	W-CDMA 3GPP REV (BTS) / W-CDMA 3GPP FWD (UE)
	By default, the "Normal" base station standard is used. However, you can switch to the "Home" base station standard using the BTS Standard softkey.
Span	+/- 8 MHz

Number of ranges	11
Fast SEM	ON
Number of power classes	4
Power reference type	Channel power

Changing the RBW and the VBW is restricted due to the definition of the limits by the standard.

To restore adapted measurement parameters, the following parameters are saved on exiting and are restored on re-entering this measurement:

- Reference level and reference level offset
- Sweep time
- Span

5.3.5 RF Combi

This measurement combines the following measurements:

- chapter 5.3.1, "Channel Power (ACLR) Measurements", on page 102
- chapter 5.3.2, "Occupied Bandwidth", on page 102
- chapter 5.3.4, "Spectrum Emission Mask", on page 103

The advantage of the RF Combi measurement is that all RF results are measured with a single measurement process. This measurement is faster than the three individual measurements.

The RF Combi measurement is performed as in the Spectrum application with the following settings:

Standard	W-CDMA 3GPP REV (BTS) / W-CDMA 3GPP FWD (UE)	
	By default, the "Normal" base station standard is used. However, you can switch to the "Home" base station standard using the BTS Standard softkey.	
Number of adjacent channels	2	
Span	25.5 MHz	
Detector	RMS	
RBW	30 kHz	
Sweep time	100 ms	
CP/ACLR	Active on trace 1	
OBW	Active on trace 1	
SEM	Active on trace 2	

To restore adapted measurement parameters, the following parameters are saved on exiting and are restored on re-entering this measurement:

- RBW, VBW
- Sweep time
- Span
- Number of adjacent channels

5.3.6 CCDF

The CCDF measurement determines the distribution of the signal amplitudes (complementary cumulative distribution function).

The CCDF measurement is performed as in the Spectrum application with the following settings:

CCDF	Active on trace 1
Analysis bandwidth	10 MHz
Number of samples	62500
VBW	5 MHz

Table 5-8: Predefined settings for 3GPP FDD CCDF measurements

For further details about the CCDF measurements refer to "Statistical Measurements" in the R&S FSW User Manual.

To restore adapted measurement parameters, the following parameters are saved on exiting and are restored on re-entering this measurement:

- Reference level and reference level offset
- Analysis bandwidth
- Number of samples

6 Analysis

General result analysis settings concerning the evaluation range, trace, markers, etc. can be configured via the "Analysis" button in the "Overview".

Analysis of RF Measurements

General result analysis settings concerning the trace, markers, lines etc. for RF measurements are identical to the analysis functions in the Spectrum application except for some special marker functions and spectrograms, which are not available in 3GPP FDD applications.

For details see the "Common Analysis and Display Functions" chapter in the R&S FSW User Manual.

The remote commands required to perform these tasks are described in chapter 10.8, "Analysis", on page 241.

- Evaluation Range.....106
- Code Domain Analysis Settings (BTS Measurements)......109
- Code Domain Analysis Settings (UE Measurements)......111
 Traces.......112

6.1 Evaluation Range

The evaluation range defines which channel, slot or frame is evaluated in the result display.

For UE measurements, the branch to be evaluated can also be defined.

Evaluation Range

Analysis Range	Channel(CH.SF)	0.256
	Slot	0
Code Domain Settings	Frame	0
Trace	Branch	IQ
		Hide 🗆
Marker	Select Branch for Windo	
	Use Common Branch	Yes No
	Branch	IQ
	Specifics for	1: Code Domain Power 🗢

Channel	107
Slot	107
Frame To Analyze	108
Branch (UE measurements only)	
L Details	
L Selecting a Different Branch for a Window	

Channel

Selects a channel for the following evaluations: "CDP PWR RELATIVE/ABSOLUTE", "POWER VS SLOT", "SYMBOL CONST", "SYMBOL EVM"

Enter a channel number and spreading factor, separated by a decimal point.

The specified channel is selected and marked in red, if active. If no spreading factor is specified, the code on the basis of the spreading factor 512 is marked. For unused channels, the code resulting from the conversion is marked.

Example: Enter 5.128

Channel 5 is marked at spreading factor 128 (30 ksps) if the channel is active, otherwise code 20 at spreading factor 512.

SCPI command:

[SENSe:]CDPower:CODE on page 196

Slot

Selects the slot for evaluation. This affects the following evaluations (see also chapter 3.1.2, "Evaluation Methods for Code Domain Analysis", on page 15):

Code Domain Power

- Peak Code Domain Error
- Result Summary
- Composite Constellation
- Code Domain Error Power
- Channel Table
- Power vs Symbol
- Symbol Const
- Symbol EVM
- Bitstream

SCPI command:

[SENSe:]CDPower:SLOT on page 197

Frame To Analyze

Defines the frame to be analyzed and displayed.

Note: if this setting is not available in UE tests, Analysis Mode (UE measurements only) is set to "Slot", i.e. only one slot is captured.

SCPI command:

[SENSe:]CDPower:FRAMe[:VALue] on page 197

Branch (UE measurements only)

Switches between the evaluation of the I and the Q branch in UE measurements.

SCPI command:

CALCulate<n>:CDPower:Mapping on page 197

Details ← Branch (UE measurements only)

By default, the same branch is used for all evaluations. However, you can select a different branch for individual windows. These settings are only available in the detailed dialog box, which is displayed when you tap the "Details" button in the "Evaluation Range" dialog box. Code Domain Analysis Settings (BTS Measurements)

Analysis Range	Channel(CH.SF)	0.256		
Cada Damain	Slot	0		
Code Domain Settings	Frame	0		
Ггасе	Branch	I	Q	
		Hio	le □	
Marker	Select Branch for Window			ן ר
	Use Common Branch	Yes	No	
	Branch	I	Q	
	Specifics for	1: Code Doma	in Power 🗧	

To hide the detailed dialog box for individual windows, tap the "Hide" button.

Selecting a Different Branch for a Window \leftarrow Branch (UE measurements only) By default, the same (common) branch is used by all windows, namely the one specified by the Branch (UE measurements only) setting.

In order to evaluate a different branch for an individual window, toggle the "Use Common Branch" setting to "No". Select the window from the list of active windows under "Specifics for", then select the "Branch".

SCPI command: CALCulate<n>:CDPower:Mapping on page 197

6.2 Code Domain Analysis Settings (BTS Measurements)

Some evaluations provide further settings for the results. The settings for BTS measurements are described here. Code Domain Analysis Settings (BTS Measurements)

🗴 Analysis	
Analysis Range	Code Domain Analyzer Common
Code Domain Settings	Code Domain Power
Trace	Code Power Display Absolute Relative Power Reference TOT CPICH
Marker	Power vs Slot
	Show Difference to On Off
	Bitstream Constellation Parameter B 0

Compensate IQ Offset	110
Code Power Display	110
Show Difference to Previous Slot	110
Constellation Parameter B	111

Compensate IQ Offset

If enabled, the I/Q offset is eliminated from the measured signal.

SCPI command:

[SENSe:]CDPower:NORMalize on page 199

Code Power Display

For "Code Domain Power" evaluation:

Defines whether the absolute power or the power relative to the chosen reference is displayed.

"TOT" Relative to the total signal power

"CPICH" Relative to the power of the CPICH

SCPI command:

[SENSe:]CDPower:PDISplay on page 199
[SENSe:]CDPower:PREFerence on page 200

Show Difference to Previous Slot

For "Power vs. Slot" evaluation:

Code Domain Analysis Settings (UE Measurements)

If enabled, the slot power difference between the current slot and the previous slot is displayed in the "Power vs. Slot" evaluation.

SCPI command:

[SENSe:]CDPower:PDIFf on page 199

Constellation Parameter B

For "Bitstream" evaluation:

Defines the constellation parameter B. According to 3GPP specification, the mapping of 16QAM symbols to an assigned bitstream depends on the constellation parameter B. This parameter can be adjusted to decide which bit mapping should be used for bitstream evaluation.

SCPI command: [SENSe:]CDPower:CPB on page 198

6.3 Code Domain Analysis Settings (UE Measurements)

Some evaluations provide further settings for the results. The settings for UE measurements are described here.

	Analysis	and the same address of	x	
	Analysis Range	Code Domain Analyzer Common		
		Eliminate DC-Offset		
	Code Domain Settings	Code Domain Power		
	Trace	Code Power Display Absolute Relative		
		Power Reference		
	Marker	Power vs Slot		
		Show Difference to Previous Slot		
		Bitstream		
		Constellation Parameter B 0		
	Į.			

Measurement Interval	112
Compensate IQ Offset	112
Eliminate Tail Chips	112
Code Power Display	112

Measurement Interval

Switches between the analysis of a half slot or a full slot.

Both measurement intervals are influenced by the settings of Eliminate Tail Chips: If "Eliminate Tail Chips" is set to "On", 96 chips at both ends of the measurement interval are not taken into account for analysis.

"Slot" The length of each analysis interval is 2560 chips, corresponding to one time slot of the 3GPP signal. The time reference for the start of slot 0 is the start of a 3GPP radio frame.

"Halfslot" The length of each analysis interval is reduced to 1280 chips, corresponding to half of one time slot of the 3GPP signal.

SCPI command:

[SENSe:]CDPower:HSLot on page 201

Compensate IQ Offset

If enabled, the I/Q offset is eliminated from the measured signal.

SCPI command: [SENSe:]CDPower:NORMalize on page 199

Eliminate Tail Chips

Selects the length of the measurement interval for calculation of error vector magnitude (EVM) in accordance with 3GPP specification Release 5.

- "On" Changes of power are expected. Therefore an EVM measurement interval of one slot minus 25 µs at each end of the burst (3904 chips) is considered.
- "Off" Changes of power are not expected. Therefore an EVM measurement interval of one slot (4096 chips) is considered. (Default settings)

SCPI command:

[SENSe:]CDPower:ETCHips on page 201

Code Power Display

For "Code Domain Power" evaluation:

Defines whether the absolute power or the power relative to the total signal is displayed.

"Absolute" Absolute power levels

"Relative" Relative to the total signal power

SCPI command:

```
[SENSe:]CDPower:PDISplay on page 199
```

6.4 Traces

The trace settings determine how the measured data is analyzed and displayed on the screen.

Traces

Malysis		x
Analysis Range	Trace 1 Clear Write +	
Code Domain Settings	n	
Trace		
Marker		
	Specifics for 1: Code Domain Power	•

In CDA evaluations, only one trace can be active in each diagram at any time.

Window-specific configuration

The settings in this dialog box are specific to the selected window. To configure the settings for a different window, select the window outside the displayed dialog box, or select the window from the "Specifics for" selection list in the dialog box.

Trace Mode

Defines the update mode for subsequent traces.

"Clear Write"	Overwrite mode: the trace is overwritten by each sweep. This is the default setting. The "Detector" is automatically set to "Auto Peak".
"Max Hold"	The maximum value is determined over several sweeps and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is greater than the previous one. The "Detector" is automatically set to "Positive Peak".
"Min Hold"	The minimum value is determined from several measurements and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is lower than the previous one. The "Detector" is automatically set to "Negative Peak".
"Average"	The average is formed over several sweeps. The Sweep/Average Count determines the number of averaging pro- cedures. The "Detector" is automatically set to "Sample".

"View" The current contents of the trace memory are frozen and displayed.

"Blank" Removes the selected trace from the display.

```
SCPI command:
```

DISPlay[:WINDow<n>]:TRACe<t>:MODE on page 241

6.5 Markers

Markers help you analyze your measurement results by determining particular values in the diagram. Thus you can extract numeric values from a graphical display.

Markers are configured in the "Marker" dialog box which is displayed when you do one of the following:

- In the "Overview", select "Analysis", and switch to the vertical "Marker" tab.
- Press the MKR key, then select the "Marker Config" softkey.

Markers in Code Domain Analysis measurements

In Code Domain Analysis measurements, the markers are set to individual symbols, codes, slots or channels, depending on the result display. Thus you can use the markers to identify individual codes, for example.

•	Individual Marker Settings	114
	General Marker Settings	
	Marker Search Settings	
	Marker Positioning Functions	

6.5.1 Individual Marker Settings

In CDA evaluations, up to 4 markers can be activated in each diagram at any time.

Analysis Range	Markers	Markers Marker Settings Search				
	Selected	State	Stimulus	Туре		
Code Domain Settings	Marker 1	On Of	0	Norm Delta		
Trace	Delta 1	On Of	0	NormDelta		
Marker	Delta 2	On Of	0	NormDelta		
	Delta 3	On Of	0	NormDelta		
	Delta 4	On Of	0	NormDelta		
			All Marker Off			
	Specifics for 1: Code Domain Power 💠					

Select Marker	
Selected Marker	
Marker State	116
Stimulus	
Marker Type	
All Markers Off	117

Select Marker

Opens a dialog box to select and activate or deactivate one or more markers quickly.

Markers

🚾 Select Marker					
Selected	State	Selected	State	Selected	State
Marker 1	On Off	Delta 6	On Off	Delta 12	On Off
Delta 1	On Off	Delta 7	On Off	Delta 13	On Off
Delta 2	On Off	Delta 8	On Off	Delta 14	On Off
Delta 3	On Off	Delta 9	On Off	Delta 15	On Off
Delta 4	On Off	Delta 10	On Off	Delta 16	On Off
Delta 5	On Off	Delta 11	On Off	itilitilit, ja laktor	

SCPI command:

Marker selected via suffix <m> in remote commands.

Selected Marker

Marker name. The marker which is currently selected for editing is highlighted orange.

SCPI command:

Marker selected via suffix <m> in remote commands.

Marker State

Activates or deactivates the marker in the diagram.

SCPI command:

CALCulate<n>:MARKer<m>[:STATe] on page 242 CALCulate<n>:DELTamarker<m>[:STATe] on page 243

Stimulus

Defines the position of the marker on the x-axis (channel, slot, symbol, depending on evaluation).

SCPI command:

```
CALCulate<n>:DELTamarker<m>:X on page 244
CALCulate<n>:MARKer<m>:X on page 243
```

Marker Type

Toggles the marker type.

The type for marker 1 is always "Normal", the type for delta marker 1 is always "Delta". These types cannot be changed.

Note: If normal marker 1 is the active marker, switching the "Mkr Type" activates an additional delta marker 1. For any other marker, switching the marker type does not activate an additional marker, it only switches the type of the selected marker.

"Normal" A normal marker indicates the absolute value at the defined position in the diagram.

Markers

"Delta" A delta marker defines the value of the marker relative to the specified reference marker (marker 1 by default).

SCPI command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 242
CALCulate<n>:DELTamarker<m>[:STATe] on page 243
```

All Markers Off

Deactivates all markers in one step. SCPI command:

CALCulate<n>:MARKer<m>:AOFF on page 243

6.5.2 General Marker Settings

General marker settings are defined in the "Marker Config" tab of the "Marker" dialog box.

👿 Analysis		×
Analysis Range	Markers Marker Settings Search Marker Table	
Code Domain Settings		
Trace		
Marker		

Marker Table Display

Defines how the marker information is displayed.

- "On" Displays the marker information in a table in a separate area beneath the diagram.
- "Off" Displays the marker information within the diagram area.

"Auto"

(Default) Up to two markers are displayed in the diagram area. If more markers are active, the marker table is displayed automatically.

SCPI command:

DISPlay:MTABle on page 245

6.5.3 Marker Search Settings

Several functions are available to set the marker to a specific position very quickly and easily. In order to determine the required marker position, searches may be performed. The search results can be influenced by special settings.

These settings are available as softkeys in the "Marker To" menu, or in the "Search" tab of the "Marker" dialog box. To display this tab, do one of the following:

- Press the MKR key, then select the "Marker Config" softkey. Then select the horizontal "Search" tab.
- In the "Overview", select "Analysis", and switch to the vertical "Marker Config" tab. Then select the horizontal "Search" tab.

Analysis Range	Markers Marker Settings Search
Code Domain Settings	Next Mode
Trace	
Marker	
	Specifics for 1: Code Domain Power 💠

Search Mode for Next Peak

Selects the search mode for the next peak search.

"Left"	Determines the next maximum/minimum to the left of the current peak.
"Absolute"	Determines the next maximum/minimum to either side of the current peak.

Markers

"Right" Determines the next maximum/minimum to the right of the current peak.

SCPI command:

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT on page 248 CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 246 CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 248 CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 246 CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 248 CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 247 CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 249 CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 247 CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 249 CALCulate<n>:MARKer<m>:MINimum:NEXT on page 249 CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 249 CALCulate<n>:MARKer<m>:MINimum:NEXT on page 249 CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 249 CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 249

6.5.4 Marker Positioning Functions

The following functions set the currently selected marker to the result of a peak search. These functions are available as softkeys in the "Marker To" menu, which is displayed when you press the MKR -> key.

Markers in Code Domain Analysis measurements

In Code Domain Analysis measurements, the markers are set to individual symbols, codes, slots or channels, depending on the result display. Thus you can use the markers to identify individual codes, for example.

Search Next Peak	
Search Next Minimum	
Peak Search	
Search Minimum	120
Marker To CPICH	
Marker To PCCPCH	

Search Next Peak

Sets the selected marker/delta marker to the next (lower) maximum of the assigned trace. If no marker is active, marker 1 is activated.

SCPI command:

CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 246 CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 248

Search Next Minimum

Sets the selected marker/delta marker to the next (higher) minimum of the selected trace. If no marker is active, marker 1 is activated.

SCPI command:

CALCulate<n>:MARKer<m>:MINimum:NEXT on page 247 CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 249

Peak Search

Sets the selected marker/delta marker to the maximum of the trace. If no marker is active, marker 1 is activated.

SCPI command:

CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 247 CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 248

Search Minimum

Sets the selected marker/delta marker to the minimum of the trace. If no marker is active, marker 1 is activated.

SCPI command:

CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 247 CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 249

Marker To CPICH

Sets the marker to the CPICH channel.

SCPI command: CALCulate<n>:MARKer<m>:FUNCtion:CPICh on page 246

Marker To PCCPCH

Sets the marker to the PCCPCH channel.

SCPI command:

CALCulate<n>:MARKer<m>:FUNCtion:PCCPch on page 246

7 Optimizing and Troubleshooting the Measurement

If the results do not meet your expectations, try the following methods to optimize the measurement:

Synchronization fails:

- Check the frequency.
- Check the reference level.
- Check the scrambling code.
- When using an external trigger, check whether an external trigger is being sent to the R&S FSW.

7.1 Error Messages

Error messages are entered in the error/event queue of the status reporting system in the remote control mode and can be queried with the command SYSTem:ERRor?.

A short explanation of the device-specific error messages for the 3GPP FDD applications is given below.

Status bar message	Description
Sync not found	This message is displayed if synchronization is not possible. Possible causes are that frequency, level, scrambling code, Invert Q values are set incorrectly, or the input signal is invalid.
Sync OK	This message is displayed if synchronization is possible.
Incorrect pilot symbols	This message is displayed if one or more of the received pilot symbols are not equal to the specified pilot symbols of the 3GPP standard.
	 Possible causes are: Incorrectly sent pilot symbols in the received frame. Low signal to noise ratio (SNR) of the WCDMA signal. One or more code channels have a significantly lower power level compared to the total power. The incorrect pilots are detected in these channels because of low channel SNR. One or more channels are sent with high power ramping. In slots with low relative power to total power, the pilot symbols might be detected incorrectly (check the signal quality by using the symbol constellation display

8 How to Perform Measurements in 3GPP FDD Applications

The following step-by-step instructions demonstrate how to perform measurements with the 3GPP FDD applications.

To perform Code Domain Analysis

1. Press the MODE key on the front panel and select the "3GPP FDD BTS" applications for base station tests, or "3GPP FDD UE" for user equipment tests.

Code Domain Analysis of the input signal is performed by default.

- 2. Select the "Overview" softkey to display the "Overview" for Code Domain Analysis.
- 3. Select the "Signal Description" button and configure the expected input signal and used scrambling code.
- 4. Select the "Input/Frontend" button and then the "Frequency" tab to define the input signal's center frequency.
- Optionally, select the "Trigger" button and define a trigger for data acquisition, for example an external trigger to start capturing data only when a useful signal is transmitted.
- 6. Select the "Signal Capture" button and define the acquisition parameters for the input signal.

In MSRA mode, define the application data instead, see "To select the application data for MSRA measurements" on page 125.

- 7. If necessary, select the "Synchronization" button and change the channel synchronization settings.
- Select the "Channel Detection" button and define how the individual channels are detected within the input signal. If necessary, define a channel table as described in "To define or edit a channel table" on page 123.
- Select the "Display Config" button and select the evaluation methods that are of interest to you.
 Arrange them on the display to suit your preferences.

10. Exit the SmartGrid mode and select the "Overview" softkey to display the "Over-

- view" again.
- 11. Select the "Analysis" button in the "Overview" to configure how the data is evaluated in the individual result displays.
 - Select the channel, slot or frame to be evaluated.
 - Configure specific settings for the selected evaluation method(s).
 - Optionally, configure the trace to display the average over a series of sweeps. If necessary, increase the "Sweep/Average Count" in the "Sweep Config" dialog box.

- Configure markers and delta markers to determine deviations and offsets within the results, e.g. when comparing errors or peaks.
- 12. Start a new sweep with the defined settings.

In MSRA mode you may want to stop the continuous measurement mode by the Sequencer and perform a single data acquisition:

- a) Select the Sequencer icon (22) from the toolbar.
- b) Set the Sequencer state to "OFF".
- c) Press the RUN SINGLE key.

To define or edit a channel table

Channel tables contain a list of channels to be detected and their specific parameters. You can create user-defined and edit pre-defined channel tables.

- 1. Select the "Channel Detection" softkey from the main "Code Domain Analyzer" menu to open the "Channel Detection" dialog box.
- To define a new channel table, select the "New" button next to the "Predefined Tables" list.

To edit an existing channel table:

- a) Tap the existing channel table in the "Predefined Tables" list.
- b) Select the "Edit" button next to the "Predefined Tables" list.
- In the "Channel Table" dialog box, define a name and, optionally, a comment that describes the channel table. The comment is displayed when you set the focus on the table in the "Predefined Tables" list.
- Define the channels to be detected using one of the following methods: Select the "Measure Table" button to create a table that consists of the channels detected in the currently measured signal. Or:
 - a) Select the "Add Channel" button to insert a row for a new channel below the currently selected row in the channel table.
 - b) Define the channel specifications required for detection:
 - Symbol rate
 - Channel number
 - Whether TFCI is used
 - Timing offset, if applicable
 - Number of pilot bits (for DPCCH only)
 - The channel's code domain power (relative to the total signal power)
- 5. Select the "Save Table" button to store the channel table.

The table is stored and the dialog box is closed. The new channel table is included in the "Predefined Tables" list in the "Channel Detection" dialog box.

- 6. To activate the use of the new channel table:
 - a) Select the table in the "Predefined Tables" list.

- b) Tap the "Select" button.A checkmark is displayed next to the selected table.
- c) Toggle the "Use Predefined Channel Table" setting to "Predefined".
- d) Toggle the "Compare Meas Signal with Predefined Table" setting to "On".
- e) Start a new measurement.

To determine the Time Alignment Error

1. Press the MODE key on the front panel and select the "3GPP FDD BTS" applications for base station tests, or "3GPP FDD UE" for user equipment tests.

Code Domain Analysis of the input signal is performed by default.

- 2. Press the "Synch." softkey to display the "Synchronization" dialog box. Configure the location of the S-CPICH for antenna 2 and select the "Antenna Pattern".
- 3. Select the Time Alignment Error measurement:
 - a) Press the MEAS key on the front panel.
 - b) In the "Select Measurement" dialog box, select the "Time Alignment Error" button.

The Time Alignment Error is calculated and displayed immediately.

To perform an RF measurement

1. Press the MODE key on the front panel and select the "3GPP FDD BTS" applications for base station tests, or "3GPP FDD UE" for user equipment tests.

The R&S FSW opens a new measurement channel for the 3GPP FDD application. Code Domain Analysis of the input signal is performed by default.

- 2. Select the RF measurement:
 - a) Press the MEAS key on the front panel.
 - b) In the "Select Measurement" dialog box, select the required measurement.

The selected measurement is activated with the default settings for the 3GPP FDD application immediately.

- 3. If necessary, adapt the settings as described for the individual measurements in the R&S FSW User Manual.
- Select the "Display Config" button and select the evaluation methods that are of interest to you.
 Arrange them on the display to suit your preferences.

Arrange them on the display to suit your preferences.

- 5. Exit the SmartGrid mode and select the "Overview" softkey to display the "Overview" again.
- 6. Select the "Analysis" button in the "Overview" to make use of the advanced analysis functions in the result displays.
 - Configure a trace to display the average over a series of sweeps; if necessary, increase the "Sweep Count" in the "Sweep" settings.
 - Configure markers and delta markers to determine deviations and offsets within the evaluated signal.

- Use special marker functions to calculate noise or a peak list.
- Configure a limit check to detect excessive deviations.
- 7. Optionally, export the trace data of the graphical evaluation results to a file.
 - a) In the "Traces" tab of the "Analysis" dialog box, switch to the "Trace Export" tab.
 - b) Select "Export Trace to ASCII File".
 - c) Define a file name and storage location and select "OK".

To select the application data for MSRA measurements

In multi-standard radio analysis you can analyze the data captured by the MSRA Master in the 3GPP FDD BTS application. Assuming you have detected a suspect area of the captured data in another application, you would now like to analyze the same data in the 3GPP FDD BTS application.

- 1. Select the "Overview" softkey to display the "Overview" for Code Domain Analysis.
- 2. Select the "Signal Capture" button.
- Define the application data range as the "Capture Length (Frames)". You must determine the number of frames according to the following formula:
 <*No of frames> = <measurement time in seconds> / 10 ms* (time per frame)
 Add an additional frame as the first frame may start before the suspect measurement range.
- 4. Define the starting point of the application data as the "Capture offset". The offset is calculated according to the following formula: <capture offset> = <starting point for application> - <starting point in capture buffer>
- 5. The analysis interval is automatically determined according to the selected channel, slot or frame to analyze (defined for the evaluation range), depending on the result display. Note that the frame/slot/channel is analyzed *within the application data*. If the analysis interval does not yet show the required area of the capture buffer, move through the frame/slots/channels in the evaluation range or correct the application data range.
- 6. If the Sequencer is off, select the "Refresh" softkey in the "Sweep" menu to update the result displays for the changed application data.

9 Measurement Examples

Some practical examples for basic 3GPP°FDD user equipment tests are provided here. They describe how operating and measurement errors can be avoided using correct presettings. The measurements are performed with an R&S FSW equipped with option R&S FSW-K73. The measurements can be performed for base station tests in a similar way with option R&S FSW-K72.

Key settings are shown as examples to avoid measurement errors. Following the correct setting, the effect of an incorrect setting is shown.

The measurements are performed using the following devices and accessories:

- The R&S FSW with Application Firmware R&S FSW-K73: 3GPP FDD UE user equipment test
- The Vector Signal Generator R&S SMU with option R&S SMU-B45: digital standard 3GPP (options R&S SMU-B20 and R&S SMU-B11 required)
- 1 coaxial cable, 50Ω, approx. 1 m, N connector
- 1 coaxial cable, 50Ω, approx. 1 m, BNC connector

The following measurements are described:

- Measurement 1: Measuring the Signal Channel Power......126
- Measurement 3: Measuring the Relative Code Domain Power......129
- Measurement 4: Triggered Measurement of Relative Code Domain Power......133
- Measurement 5: Measuring the Composite EVM......135
- Measurement 6: Determining the Peak Code Domain Error.....136

9.1 Measurement 1: Measuring the Signal Channel Power

The measurement of the spectrum gives an overview of the 3GPP FDD UE signal and the spurious emissions close to the carrier.

Test setup

Connect the RF output of the R&S SMU to the RF input of the R&S FSW (coaxial cable with N connectors).

Settings on the R&S SMU

- 1. PRESET
- 2. "FREQ" = 2.1175 GHz
- 3. "LEVEL"= 0 dBm
- 4. "DIGITAL STD" = "WCDMA/3GPP"
- 5. "DIGITAL STD > Set Default"
- 6. "DIGITAL STD > LINK DIRECTION > UP/REVERSE"

Measurement 2: Determining the Spectrum Emission Mask

- 7. "DIGITAL STD > TEST MODELS > DPCCH DPDCH960ksps"
- 8. "DIGITAL STD > Select User Equipment > UE 1 " = "ON"
- 9. "DIGITAL STD > WCDMA/3GPP > STATE"= "ON"

Settings on the R&S FSW

- 1. PRESET
- 2. "MODE > 3GPP FDD UE"
- 3. "AMPT > Reference level"= 0 dBm
- 4. "FREQ > Center frequency" = 2.1175 GHz
- 5. "MEAS > POWER"
- 6. "AMPT > Scale Config > Auto Scale Once"

Result

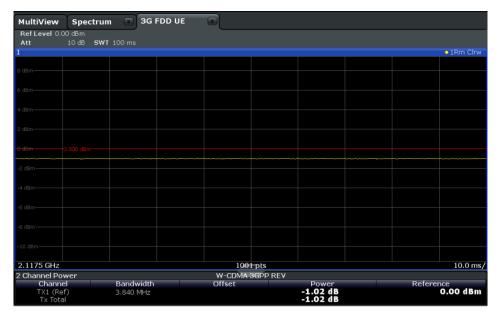


Fig. 9-1: Measurement Example 1: Measuring the Signal Channel Power

9.2 Measurement 2: Determining the Spectrum Emission Mask

The 3GPP specification defines a measurement which monitors the compliance with a spectral mask in a range of at least ±12.5 MHz around the 3GPP FDD UE carrier. To assess the power emissions in the specified range, the signal power is measured in the range near the carrier using a 30kHz filter, in the ranges far away from the carrier using a 1MHz filter. The resulting trace is compared to a limit line defined in the 3GPP specification.

Test setup

 Connect the RF output of the R&S SMU to the RF input of the R&S FSW (coaxial cable with N connectors).

Settings on the R&S SMU

- 1. PRESET
- 2. "FREQ" = 2.1175 GHz
- 3. "LEVEL"= 0 dBm
- 4. "DIGITAL STD" = "WCDMA/3GPP"
- 5. "DIGITAL STD > Set Default"
- 6. "DIGITAL STD > LINK DIRECTION > UP/REVERSE"
- 7. "DIGITAL STD > TEST MODELS > DPCCH_DPDCH960ksps"
- 8. "DIGITAL STD > Select User Equipment > UE 1 " = "ON"
- 9. "DIGITAL STD > WCDMA/3GPP > STATE"= "ON"

Settings on the R&S FSW

- 1. PRESET
- 2. "MODE > 3GPP FDD UE"
- 3. "AMPT > Reference level"= 0 dBm
- 4. "FREQ > Center frequency" = 2.1175 GHz
- 5. "MEAS > Spectrum Emission Mask"
- "AMPT > Scale Config > Auto Scale Once"

Result

The following results are displayed:

- Spectrum of the 3GPP FDD UE signal
- Limit line defined in the standard
- Information on limit line violations (passed/failed)

Measurement 3: Measuring the Relative Code Domain Power

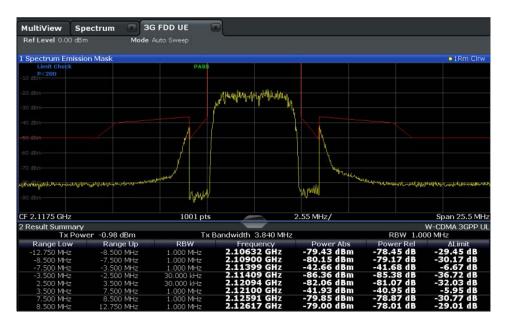


Fig. 9-2: Measurement Example 2: Determining the Spectrum Emission Mask

9.3 Measurement 3: Measuring the Relative Code Domain Power

A code domain power measurement on one of the channel configurations is shown in the following. Basic parameters of CDP analysis are changed to demonstrate the effects of values that are not adapted to the input signal.

Test setup

- 1. Connect the RF output of the R&S SMU to the RF input of the R&S FSW (coaxial cable with N connectors).
- Connect the reference input (REF INPUT) on the rear panel of the R&S FSW to the reference output (REF) on the rear panel of R&S SMU (coaxial cable with BNC connectors).

Settings on the R&S SMU

- 1. PRESET
- 2. "FREQ" = 2.1175 GHz
- 3. "LEVEL"= 0 dBm
- 4. "DIGITAL STD" = "WCDMA/3GPP"
- 5. "DIGITAL STD > Set Default"
- 6. "DIGITAL STD > LINK DIRECTION > UP/REVERSE"

Measurement 3: Measuring the Relative Code Domain Power

- 7. "DIGITAL STD > TEST MODELS > DPCCH_DPDCH960ksps"
- 8. "DIGITAL STD > Select User Equipment > UE 1 " = "ON"
- 9. "DIGITAL STD > WCDMA/3GPP > STATE"= "ON"

Settings on the R&S FSW

- 1. PRESET
- 2. "MODE > 3GPP FDD UE"
- 3. "AMPT > Reference level"= 10 dBm
- 4. "FREQ > Center frequency" = 2.1175 GHz
- 5. "AMPT > Scale Config > Auto Scale Once"

Result

Window 1 shows the code domain power of the signal, on the Q branch.

Window 2 shows the result summary, i.e. the numeric results of the CDP measurement.

MultiView	Spect	trum 📧	3G FDD U	E 💽					Reference		
Ref Level 10.	00 dBm	Freq 2.117	5 GHz Chan	nel 0.256 Q	Power	Relative	1	0.0 dB	m	Σ	x
Att	20 dB		Slot		Capture						
1 Code Domai	n Power									01	Cirw
-7 da											
-14 dB											
-21 dB											
-28 dB-											
28 08.											
35 d8-											
0000											
42 dB											
49 dB											
-56 dB											
-63 dB											
00 00											
Ch 0					32	Ch/				(Ch 255
2 Result Summ											
General Resu	ilts (Fra	me U, Slot U									
Total Power Trigger To Fran	mo		-0.82 dBm 2.131785 ms	Carrier Fre	q Error		-2.98 kHz	IQ Imba			1 ppm .06 %
Avg Power Ina			-40 91 dB	Composite	EVM				(15 Ksps)		71 dB
Rho				No of Activ		els	2	Avg.RCI	DE(4PAM)		/1 GD
Channel Resu	ults (Ch	0.256)									
Symbol Rate				Timing Off	set			No of P			
Channel Mapp	ling		Q	RCDE			-70.10 dB	Modulat	tion Type	BP	SK_Q
Channel Powe				Symbol EV			0.07 % PK				
Channel Powe	r kel		-3.01 dB	Symbol EV	M		0.03 % rms				

Fig. 9-3: Measurement Example 3: Measuring the Relative Code Domain Power

9.3.1 Synchronizing the Reference Frequencies

The synchronization of the reference oscillators both of the DUT and R&S FSW strongly reduces the measured frequency error.

Test setup

Connect the reference input (REF INPUT (1...20 MHZ)) on the rear panel of the R&S FSW to the reference output (REF) on the rear panel of R&S SMU (coaxial cable with BNC connectors).

Settings on the R&S SMU

The settings on the R&S SMU remain the same.

Settings on the R&S FSW

In addition to the settings of the basic test, activate the use of an external reference:

"SETUP > Reference > Reference Frequency Input = External Reference 10 MHz"

The displayed carrier frequency error should be < 10 Hz.

9.3.2 Behaviour with Deviating Center Frequency

In the following, the behaviour of the DUT and the R&S FSW with an incorrect center frequency setting is shown.

- 1. Tune the center frequency of the signal generator in 0.5 kHz steps.
- 2. Watch the measurement results on the R&S FSW screen:
 - Up to 1 kHz, a frequency error causes no apparent difference in measurement accuracy of the code domain power measurement.
 - Above a frequency error of 1 kHz, the probability of an impaired synchronization increases. With continuous measurements, at times all channels are displayed in blue with almost the same level.
 - Above a frequency error of approx. 2 kHz, a CDP measurement cannot be performed. The R&S FSW displays all possible codes in blue with a similar level.
- 3. Reset the frequency to 2.1175 GHz both on the R&S SMU and on the R&S FSW.

Measurement 3: Measuring the Relative Code Domain Power

	~					
MultiView	Spectrum 🔻	🔳 3G FDD U	E 🗶			
Ref Level 10.	00 dBm Freq 2.:	1175 GHz Chann	nel 0.256 Q Power	Relative		
Att		Slot	0 Capture			
1 Code Domai	n Power					1 Clrw
-3.01 dB						
-23.01 dB						
-63.01 dB						
Columba States	A DESCRIPTION OF THE OWNER OF THE	States - Links	A REAL PROPERTY AND A REAL	And the second second	ويتعاط ويعلون والمراجع	ويأريها والمتعارية وأرقا
•		-				
Ch 0			32 0	ch/		Ch 255
2 Result Sumn	narv					
	ilts (Frame 0, Slo	ot 0.)			1	
Total Power	ites (i raine of oie		Carrier Freg Error	2 50 kHz	Chip Rate Error	0.00 ppm
Trigger To Fran	me	2.394235 ms			IO Imbalance	0.05 %
Ava Power Ina			Composite EVM		Pk CDE(15 Ksps)	-71.85 dB
Rho			No of Active Channe			
Channel Resu	ults (Ch 0.256)					
Symbol Rate			Timing Offset		No of Pilot Bits	
Channel Mapp		, jó	RCDE	-69.62 dB	Modulation Type	BPSK_Q
Channel Powe			Symbol EVM	0.08 % PK		
Channel Powe	r Rol	-3.01 dB	Symbol EVM	0.03 % rms		

Fig. 9-4: Measurement Example 3: Measuring the Relative Code Domain Power with Incorrect Center Frequency

9.3.3 Behaviour with Incorrect Scrambling Code

A valid CDP measurement can be carried out only if the scrambling code set on the R&S FSW is identical to that of the transmitted signal.

Settings on the R&S SMU

• "SCRAMBLING CODE" = 0000

Settings on the R&S FSW

"Meas Config > Signal Description > Scrambling Code" = 0001

Result

The CDP display shows all possible codes with approximately the same level.

Measurement 4: Triggered Measurement of Relative Code Domain Power

Fig. 9-5: Measurement Example 3: Measuring the Relative Code Domain Power with Incorrect Scrambling Code

9.4 Measurement 4: Triggered Measurement of Relative Code Domain Power

If the code domain power measurement is performed without external triggering, a section of approximately 20 ms of the test signal is recorded at an arbitrary moment to detect the start of a 3GPP FDD UE frame in this section. Depending on the position of the frame start, the required computing time can be quite long. Applying an external (frame) trigger can reduce the computing time.

Test setup

- 1. Connect the RF output of the R&S SMU to the input of the R&S FSW.
- Connect the reference input (REF INPUT) on the rear panel of the R&S FSW to the reference input (REF) on the rear panel of the R&S SMU (coaxial cable with BNC connectors).
- Connect the external trigger input on the front panel of the R&S FSW (TRIGGER INPUT) to the external trigger output on the front panel of the R&S SMU (TRIGOUT1 of PAR DATA).

Settings on the R&S SMU

- 1. PRESET
- 2. "FREQ" = 2.1175 GHz
- 3. "LEVEL"= 0 dBm

Measurement 4: Triggered Measurement of Relative Code Domain Power

- 4. "DIGITAL STD" = "WCDMA/3GPP"
- 5. "DIGITAL STD > Set Default"
- 6. "DIGITAL STD > LINK DIRECTION > UP/REVERSE"
- 7. "DIGITAL STD > TEST MODELS > DPCCH_DPDCH960ksps"
- 8. "DIGITAL STD > Select User Equipment > UE 1 " = "ON"
- 9. "DIGITAL STD > WCDMA/3GPP > STATE"= "ON"

Settings on the R&S FSW

- 1. PRESET
- 2. "MODE > 3GPP FDD UE"
- 3. "AMPT > Reference level"= 10 dBm
- 4. "FREQ > Center frequency" = 2.1175 GHz
- 5. "Meas Config > Signal Description > Scrambling Code" = 0000
- 6. "TRIG > External Trigger 1"
- 7. "AMPT > Scale Config > Auto Scale Once"

Results

The following is displayed:

- Window 1: Code domain power of signal (channel configuration with 3 data channels on Q branch)
- Window 2: Result summery, including the Trigger to Frame, i.e. offset between trigger event and start of 3GPP FDD UE frame

MultiView	Spectrum 桊	🐨 3G FDD UE				
Ref Level 10. Att TRG:EXT1		1175 GHz Chann Slot	el 0.256 Q Power 0 Capture	Relative Frame		
1 Code Domai	n Power					1 Clrw
-3.01 d8						
-23.01 d8						
-43.01 dB						
-63.01 d8						
ALL AND ALL NO.	and the state of	And the second second	A REAL PROPERTY IN	and the second states of the second	ALL AND DESCRIPTION OF THE OWNER	ALL DAL AND ALL D
Ch 0			32 0	h. /		Ch 255
2 Result Sumn			02.0	11/		GH 233
	ults (Frame 0, Slo	of (1)				
Total Power Trigger To Fran			Carrier Freq Error IQ Offset		Chip Rate Error IO Imbalance	0.00 ppm 0.06 %
Avg Power Ina Rho	act Chan	-40.93 dB	Composite EVM No of Active Channe	0.34 %	Pk CDE(15 Ksps) Avg.RCDE(4PAM)	-70.84 dB
Channel Resu Symbol Rate Channel Mapp	ults (Ch 0.256)		Timing Offset RCDE		No of Pilot Bits Modulation Type	
						BPSK_Q

Fig. 9-6: Measurement Example 4: Triggered Measurement of Relative Code Domain Power

Measurement 5: Measuring the Composite EVM

A

The repetition rate of the measurement increases considerably compared to the repetition rate of a measurement without an external trigger.

Trigger Offset

A delay of the trigger event referenced to the start of the 3GPP FDD UE frame can be compensated by modifying the trigger offset.

Setting on the R&S FSW:
 "TRIG > Trigger Offset" = 100 μs

The "Trigger to Frame" parameter in the Result Summary (Window 2) changes: "Trigger to Frame" = -100 μs

9.5 Measurement 5: Measuring the Composite EVM

The 3GPP specification defines the composite EVM measurement as the average square deviation of the total signal.

An ideal reference signal is generated from the demodulated data. The test signal and the reference signal are compared with each other. The square deviation yields the composite EVM.

Test setup

- 1. Connect the RF output of the R&S SMU to the input of the R&S FSW.
- Connect the reference input (REF INPUT) on the rear panel of the R&S FSW to the reference input (REF) on the rear panel of the R&S SMU (coaxial cable with BNC connectors).
- Connect the external trigger input on the front panel of the R&S FSW (TRIGGER INPUT) to the external trigger output on the front panel of the R&S SMU (TRIGOUT1 of PAR DATA).

Settings on the R&S SMU

- 1. PRESET
- 2. "FREQ" = 2.1175 GHz
- 3. "LEVEL"= 0 dBm
- 4. "DIGITAL STD" = "WCDMA/3GPP"
- 5. "DIGITAL STD > Set Default"
- 6. "DIGITAL STD > LINK DIRECTION > UP/REVERSE"
- 7. "DIGITAL STD > TEST MODELS > DPCCH_DPDCH960ksps"
- 8. "DIGITAL STD > Select User Equipment > UE 1 " = "ON"

Measurement 6: Determining the Peak Code Domain Error

9. "DIGITAL STD > WCDMA/3GPP > STATE"= "ON"

Settings on the R&S FSW

- 1. PRESET
- 2. "MODE > 3GPP FDD UE"
- 3. "AMPT > Reference level"= 10 dBm
- 4. "FREQ > Center frequency" = 2.1175 GHz
- 5. "TRIG > External Trigger 1"
- 6. "MEAS CONFIG > Display Config > Composite EVM" (Window 2)
- 7. "AMPT > Scale Config > Auto Scale Once"

Results

The following is displayed:

- Window 1: Code domain power of signal, branch Q
- Window 2: Composite EVM (EVM for total signal)

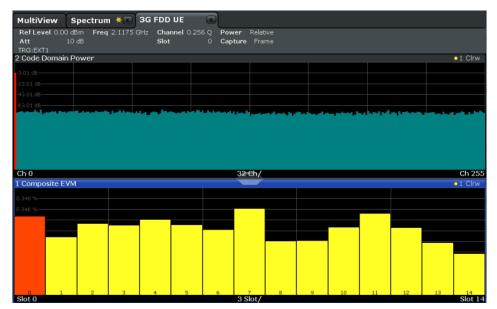


Fig. 9-7: Measurement Example 5: Measuring the Composite EVM

9.6 Measurement 6: Determining the Peak Code Domain Error

The peak code domain error measurement is defined in the 3GPP specification for FDD signals.

An ideal reference signal is generated from the demodulated data. The test signal and the reference signal are compared with each other. The difference of the two signals is projected onto the classes of the different spreading factors. The peak code domain error measurement is obtained by summing up the symbols of each difference signal slot and searching for the maximum error code.

Test setup

- 1. Connect the RF output of the R&S SMU to the input of the R&S FSW.
- Connect the reference input (REF INPUT) on the rear panel of the R&S FSW to the reference input (REF) on the rear panel of the R&S SMU (coaxial cable with BNC connectors).
- Connect the external trigger input on the front panel of the R&S FSW (TRIGGER INPUT) to the external trigger output on the front panel of the R&S SMU (TRIGOUT1 of PAR DATA).

Settings on the R&S SMU

- 1. PRESET
- 2. "FREQ" = 2.1175 GHz
- 3. "LEVEL"= 0 dBm
- 4. "DIGITAL STD" = "WCDMA/3GPP"
- 5. "DIGITAL STD > Set Default"
- 6. "DIGITAL STD > LINK DIRECTION > UP/REVERSE"
- 7. "DIGITAL STD > TEST MODELS > DPCCH_DPDCH960ksps"
- 8. "DIGITAL STD > Select User Equipment > UE 1 " = "ON"
- 9. "DIGITAL STD > WCDMA/3GPP > STATE"= "ON"

Settings on the R&S FSW

- 1. PRESET
- 2. "MODE > 3GPP FDD UE"
- 3. "AMPT > Reference level"= 0 dBm
- 4. "FREQ > Center frequency" = 2.1175 GHz
- 5. "TRIG > External Trigger 1"
- 6. "MEAS CONFIG > Display Config > Peak Code Domain Error" (Window 2)
- 7. "AMPT > Scale Config > Auto Scale Once"

Results

The following is displayed:

Measurement 6: Determining the Peak Code Domain Error

- Window 1: Code domain power of signal, branch Q
- Window 2: Peak code domain error (projection of error onto the class with spreading factor 256)

q 2.1175 GHz	Slot	0 Captu	re Frame				• 1 Cirw
		r - Chicolt	•				
		en lant	-				
			-				
					•		
		3	32 Ch/				Ch 255
or							1 Clrw
3 4	4 5	6	7 8	9 10	11	12	13 14 Slot 14

Fig. 9-8: Measurement Example 6: Determining the Peak Code Domain Error

10 Remote Commands for 3GPP FDD Measurements

The following commands are required to perform measurements in 3GPP FDD applications in a remote environment. It assumes that the R&S FSW has already been set up for remote operation in a network as described in the base unit manual.

Common Suffixes

In 3GPP FDD applications, the following common suffixes are used in remote commands:

Suffix	Value range	Description
<n></n>	116	Window
<t></t>	1 (CDA) 6 (RF)	Trace
<m></m>	14 (CDA) 116 (RF)	Marker
<ch></ch>	118 (TX channel) 111 (ALT channel)	Channel in RF measurements
<k></k>	18 (Limit line) 1 2 (Display line)	Line in RF measurements

Note that basic tasks that are also performed in the base unit in the same way are not described here. For a description of such tasks, see the R&S FSW User Manual. In particular, this includes:

- · Managing Settings and Results, i.e. storing and loading settings and result data
- Basic instrument configuration, e.g. checking the system configuration, customizing the screen layout, or configuring networks and remote operation
- Using the common status registers

The following tasks specific to 3GPP applications are described here:

•	Activating 3GPP FDD Measurements	140
	Selecting a Measurement	
	Configuring Code Domain Analysis and Time Alignment Error Measurements	
		145
•	Configuring RF Measurements	201
•	Configuring the Result Display	202
•	Starting a Measurement	212
	Retrieving Results	
	Analysis	
	Configuring the Application Data Range (MSRA mode only)	

Activating 3GPP FDD Measurements

•	Querying the Status Registers	
٠	Commands for Compatibility	
	Programming Examples (R&S FSW-K73)	

10.1 Activating 3GPP FDD Measurements

3GPP FDD measurements require a special application on the R&S FSW. The measurement is started immediately with the default settings.

INSTrument:CREate[:NEW]	.140
INSTrument:CREate:REPLace	.140
INSTrument:DELete	.141
INSTrument:LIST?	.141
INSTrument:REName	.142
INSTrument[:SELect]	.142
SYSTem:PRESet:CHANnel[:EXECute]	

INSTrument:CREate[:NEW] <ChannelType>, <ChannelName>

This command adds an additional measurement channel. The number of measurement channels you can configure at the same time depends on available memory.

Parameters:

<channeltype></channeltype>	Channel type of the new channel. For a list of available channel types see table 10-1.
<channelname></channelname>	String containing the name of the channel. The channel name is displayed as the tab label for the measurement channel. Note: If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the new channel (see table 10-1).
Example:	INST:CRE SAN, 'Spectrum 2' Adds an additional spectrum display named "Spectrum 2".

INSTrument:CREate:REPLace <ChannelName1>,<ChannelType>,<ChannelName2>

This command replaces a measurement channel with another one.

Parameters: <channelname1></channelname1>	String containing the name of the measurement channel you want to replace.
<channeltype></channeltype>	Channel type of the new channel. For a list of available channel types see table 10-1.
<channelname2></channelname2>	String containing the name of the new channel. Note: If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the new channel (see table 10-1).

Example: INST:CRE:REPL 'Spectrum2',IQ,'IQAnalyzer' Replaces the channel named 'Spectrum2' by a new measurement channel of type 'IQ Analyzer' named 'IQAnalyzer'.

INSTrument:DELete <ChannelName>

This command deletes a measurement channel. If you delete the last measurement channel, the default "Spectrum" channel is activated.

Parameters:

<channelname></channelname>	String containing the name of the channel you want to delete. A measurement channel must exist in order to be able delete it.
Example:	INST:DEL 'Spectrum4' Deletes the spectrum4'.

INSTrument:LIST?

This command queries all active measurement channels. This is useful in order to obtain the names of the existing measurement channels, which are required in order to replace or delete the channels.

Return values:

<channeltype>, <channelname></channelname></channeltype>	For each channel, the command returns the channel type and channel name (see table 10-1). Tip: to change the channel name, use the INSTrument:REName command.
Example:	INST:LIST? Result for 3 measurement channels: 'ADEM','Analog Demod','IQ','IQ Analyzer','SANALYZER','Spectrum'
Usage:	Query only

Usage:

Table 10-1: Available measurement channel types and default channel names

Application	<channeltype> Parameter</channeltype>	Default Channel Name*)
Spectrum	SANALYZER	Spectrum
I/Q Analyzer	IQ	IQ Analyzer
Pulse (R&S FSW-K6)	PULSE	Pulse
Analog Demodulation (R&S FSW-K7)	ADEM	Analog Demod
GSM (R&S FSW-K10)	GSM	GSM
Multi-Carrier Group Delay (R&S FSW-K17)	MCGD	MC Group Delay
Noise (R&S FSW-K30)	NOISE	Noise
Note: the default channel name is also listed in the table. If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the new channel.		

Activating 3GPP FDD Measurements

<channeltype> Parameter</channeltype>	Default Channel Name*)
PNOISE	Phase Noise
DDEM	VSA
BWCD	3G FDD BTS
MWCD	3G FDD UE
ВС2К	CDMA2000 BTS
МС2К	CDMA2000 MS
BDO	1xEV-DO BTS
MDO	1xEV-DO MS
WLAN	WLAN
LTE	LTE
	PNOISE DDEM BWCD MWCD BC2K MC2K BDO MDO WLAN

exists, the default name, extended by a sequential number, is used for the new channel.

INSTrument:REName <ChannelName1>, <ChannelName2>

This command renames a measurement channel.

Parameters:

<channelname1></channelname1>	String containing the name of the channel you want to rename.
<channelname2></channelname2>	String containing the new channel name. Note that you can not assign an existing channel name to a new channel; this will cause an error.
Example:	INST:REN 'Spectrum2', 'Spectrum3' Renames the channel with the name 'Spectrum2' to 'Spectrum3'.

INSTrument[:SELect] <ChannelType>

This command activates a new measurement channel with the defined channel type, or selects an existing measurement channel with the specified name.

See also INSTrument:CREate[:NEW] on page 140.

For a list of available channel types see table 10-1.

Parameters:	
<channeltype></channeltype>	BWCD
	3GPP FDD BTS option, R&S FSW–K72
	MWCD
	3GPP FDD UE option, R&S FSW–K73

SYSTem:PRESet:CHANnel[:EXECute]

This command restores the default instrument settings in the current channel.

Use INST: SEL to select the channel.

Example:	INST 'Spectrum2' Selects the channel for "Spectrum2". SYST:PRES:CHAN:EXEC Restores the factory default settings to the "Spectrum2" channel.
Usage:	Event
Manual control:	See "Preset Channel" on page 59

10.2 Selecting a Measurement

The following commands are required to define the measurement type in a remote environment. For details on available measurements see chapter 3, "Measurements and Result Display", on page 12.

CONFigure:WCDPower[:BTS]:MEASurement14	3
CONFigure:WCDPower:MS:MEASurement14	4

CONFigure:WCDPower[:BTS]:MEASurement <Type>

This command selects the type of 3GPP FDD BTS base station tests.

Parameters:

<Type>

ACLR | ESPectrum | WCDPower | POWer | OBANdwith | CCDF | RFCombi | TAERror

ACLR

Adjacent-channel power measurement (standard 3GPP WCDMA Forward) with predefined settings

ESPectrum

Measurement of spectrum emission mask

WCDPower

Code domain power measurement. This selection has the same effect as command INSTrument: SELect

POWer

Channel power measurement (standard 3GPP WCDMA Forward) with predefined settings

OBANdwith | OBWidth

Measurement of occupied power bandwidth

CCDF

Measurement of complementary cumulative distribution function

RFCombi

Combined Adjacent Channel Power (Ch Power ACLR) measurement with Occupied Bandwidth and Spectrum Emission Mask

TAERror

Time Alignment Error measurement

*RST: OFF

CONF:WCDP:MEAS POW Example:

Mode:

Manual control:

See "Ch Power ACLR" on page 33

See "Occupied Bandwidth" on page 33 See "Power" on page 33

BTS application only

See "RF Combi" on page 34

See "Result List" on page 31

See "Spectrum Emission Mask" on page 35 See "CCDF" on page 36

- See "Creating a New Channel Table from the Measured Signal
- (Measure Table)" on page 92

CONFigure:WCDPower:MS:MEASurement <Type>

This command selects the 3GPP FDD UE user equipment tests.

Parameters:			
<type></type>	ACLR ESPectrum WCDPower POWer OBANdwith OBWidth CCDF		
	ACLR		
	Adjacent-channel power measurement (standard 3GPP WCDMA Reverse) with predefined settings		
	ESPectrum		
	Measurement of spectrum emission mask		
	WCDPower		
	Code domain power measurement. This selection has the same effect as command INSTrument:SELect		
	POWer		
	Channel power measurement (standard 3GPP WCDMA Reverse) with predefined settings		
	OBANdwith OBWidth		
	Measurement of occupied power bandwidth.		
	CCDF		
	Measurement of complementary cumulative distribution function.		
	*RST: WCDPower		
Example:	CONF:WCDP:MS:MEAS POW		
Mode:	UE application only		
Manual control:	See "Creating a New Channel Table from the Measured Signal (Measure Table)" on page 92		

10.3 Configuring Code Domain Analysis and Time Alignment Error Measurements

The following commands are required to configure Code Domain Analysis and Time Alignment Error measurements.

•	Signal Description	.146
	Configuring the Data Input and Output	
•	Frontend Configuration	.162
•	Configuring Triggered Measurements	.168
•	Signal Capturing	.176
	Synchronization	
	Channel Detection	
•	Sweep Settings	.192
•	Automatic Settings	.193
•	Evaluation Range	.196
	Code Domain Analysis Settings (BTS Measurements)	
•	Code Domain Analysis Settings (UE Measurements)	.200

10.3.1 Signal Description

The signal description provides information on the expected input signal.

• Bl	S Signal Description	146
	S Scrambling Code	
	E Signal Description	

10.3.1.1 BTS Signal Description

The following commands describe the input signal in BTS measurements.

[SENSe:]CDPower:ANTenna	46
[SENSe:]CDPower:HSDPamode1	46
[SENSe:]CDPower:LCODe:SEARch[:IMMediate]?1	47
[SENSe:]CDPower:LCODe:SEARch:LIST?	47
[SENSe:]CDPower:MIMO1	48
[SENSe:]CDPower:PCONtrol	

[SENSe:]CDPower:ANTenna <Mode>

This command activates or deactivates the antenna diversity mode and selects the antenna to be used.

Parameters:

<mode></mode>	OFF 1 2	
	*RST:	OFF
Example:	CDP:ANT 1	
Mode:	BTS application only	
Manual control:	See "Antenna Diversity" on page 61 See "Antenna Number" on page 61 See "Antenna1 / Antenna2" on page 86	

[SENSe:]CDPower:HSDPamode <State>

This command defines whether the HS-DPCCH channel is searched or not.

Parameters:

<State>

ON | OFF

ON

The high speed channels can be detected. A detection of the modulation type (QPSK /16QAM) is done instead of a detection of pilot symbols.

OFF

The high speed channel can not be detected. A detection of pilot symbols is done instead a detection of the modulation type (QPSK /16QAM)

*RST: ON

Example:	SENS:CDP:HSDP OFF
Manual control:	See "HSDPA/UPA" on page 60

[SENSe:]CDPower:LCODe:SEARch[:IMMediate]?

This command automatically searches for the scrambling codes that lead to the highest signal power. The code with the highest power is stored as the new scrambling code for further measurements.

Searching requires that the correct center frequency and level are set. The scrambling code search can automatically determine the primary scrambling code number. The secondary scrambling code number is expected as 0. Alternative scrambling codes can not be detected. Therefore the range for detection is 0x0000 – 0x1FF0h, where the last digit is always 0.

If the search is successful (PASS), a code was found and can be queried using [SENSe:]CDPower:LCODe:SEARch:LIST?.

Example:SENS:CDP:LCOD:SEAR? Searches the scrambling code that leads to the highest signal power and returns the status of the search.Usage:Query onlyMode:BTS application onlyManual control:See "Autosearch for Scrambling Code" on page 62	<pre>Parameters: <status></status></pre>	PASSed Scrambling code(s) found. FAILed No scrambling code found.
Mode: BTS application only	Example:	Searches the scrambling code that leads to the highest signal
	Usage:	Query only
Manual control: See "Autosearch for Scrambling Code" on page 62	Mode:	BTS application only
	Manual control:	See "Autosearch for Scrambling Code" on page 62

[SENSe:]CDPower:LCODe:SEARch:LIST?

This command returns the automatic search sequence (see [SENSe:]CDPower: LCODe:SEARch[:IMMediate]? on page 147) as a comma-separated list of results for each detected scrambling code.

Return values:

<code1></code1>	Scrambling code in decimal format.	
	Range:	16 * n, with n = 0511
<code2></code2>	Scrambling code in hexadecimal format.	
	Range:	0x0000h - 0x1FF0h, where the last digit is always 0
<cpichpower></cpichpower>	Highest power value for the corresponding scrambling code.	

Example:	SENS:CDP:LCOD:SEAR:LIST? Result: 16,0×10,-18.04,32,0×20,-22.87,48,0×30,-27.62, 64,0×40,-29.46 (Explanation in table below)
Usage:	Query only
Mode:	BTS application only

Manual control: See "Scrambling Codes" on page 62

Table 10-2: Description of query results in example:

Code (dec)	Code(hex)	CPICH power (dBm)
16	0x10	-18.04
32	0x20	-22.87
48	0x30	-27.62
64	0x40	-29.46

[SENSe:]CDPower:MIMO <State>

Activates or deactivates single antenna MIMO measurement mode.

Channels that have modulation type MIMO-QPSK or MIMO-16QAM are only recognized as active channels if this setting is ON.

For details see "MIMO" on page 61.

.

Parameters: <state></state>	ON OFF *RST: OFF	
Example:	SENS:CDP:MIMO ON	
Mode:	BTS application only	
Manual control:	See "MIMO" on page 61	

[SENSe:]CDPower:PCONtrol <Position>

This command determines the power control measurement position. An enhanced channel search is used to consider the properties of compressed mode channels.

Parameters:	
<position></position>	SLOT PILot
	SLOT
	The slot power is averaged from the beginning of the slot to the end of the slot.
	PILot
	The slot power is averaged from the beginning of the pilot symbols of the previous slot to the beginning of the pilot symbols of the current slot.
	*RST: PILot
Example:	SENS:CDP:PCON SLOT
	Switch to power averaging from slot start to the end of the slot. An enhanced channel search is used to consider the properties of compressed mode channels.
	SENS:CDP:PCON PIL
	Switch to power averaging from the pilot symbols of the previous slot number to the start of the pilots of the displayed slot number. The channel search only considers standard channels.
Mode:	BTS application only
Manual control:	See "Compressed Mode" on page 61

10.3.1.2 BTS Scrambling Code

The scrambling code identifies the base station transmitting the signal in BTS measurements.

SENSe:]CDPower:LCODe:DVALue14	9
SENSe:]CDPower:LCODe[:VALue]14	9

[SENSe:]CDPower:LCODe:DVALue <ScramblingCode>

This command defines the scrambling code in decimal format.

Parameters: <scramblingcode></scramblingcode>	<numeric value=""> *RST: 0</numeric>
Example:	SENS:CDP:LCOD:DVAL 3 Defines the scrambling code in decimal format.
Manual control:	See "Scrambling Code" on page 62 See "Format Hex/Dec" on page 62 See "Format" on page 63

[SENSe:]CDPower:LCODe[:VALue] <ScramblingCode>

This command defines the scrambling code in hexadecimal format.

Parameters: <scramblingcode></scramblingcode>	Range: *RST:	#H0 to #H1fff #H0
Example:	SENS:CDP:LCOD #H2 Defines the scrambling code in hexadecimal format.	
Manual control:	See "Format Hex/Dec" on page 62 See "Scrambling Code" on page 63	

10.3.1.3 UE Signal Description

The following commands describe the input signal in UE measurements.

Useful commands for describing UE signals described elsewhere:

- [SENSe:]CDPower:LCODe[:VALue] on page 149
- [SENSe:]CDPower:HSDPamode on page 146

Remote commands exclusive to describing UE signals:

[SENSe:]CDPower:LCODe:TYPE15	0
[SENSe:]CDPower:SFACtor15	0

[SENSe:]CDPower:LCODe:TYPE <Type>

This command switches between long and short scrambling code.

Parameters:

<type></type>	LONG SHORt	
	*RST: LONG	
Example:	CDP:LCOD:TYPE SHOR	
Mode:	UE application only	
Manual control:	See "Type" on page 64	

[SENSe:]CDPower:SFACtor <SpreadingFactor>

This command defines the spreading factor. The spreading factor is only significant for Peak Code Domain Error evaluation.

Parameters:

10.3.2 Configuring the Data Input and Output

•	RF Input	.151
•	Remote Commands for the Digital Baseband Interface (R&S FSW-B17)	153
•	Configuring the Outputs	.161

10.3.2.1 RF Input

INPut:ATTenuation:PROTection:RESet	151
INPut:COUPling	151
INPut:FILTer:HPASs[:STATe]	
INPut:FILTer:YIG[:STATe]	
INPut:IMPedance	
INPut:SELect	

INPut:ATTenuation:PROTection:RESet

This command resets the attenuator and reconnects the RF input with the input mixer after an overload condition occured and the protection mechanism intervened. The error status bit (bit 3 in the STAT:QUES:POW status register) and the INPUT OVLD message in the status bar are cleared.

(For details on the status register see the R&S FSW User Manual).

The command works only if the overload condition has been eliminated first.

Usage: Event

INPut:COUPling <CouplingType>

This command selects the coupling type of the RF input.

The command is not available for measurements with the Digital Baseband Interface (R&S FSW-B17).

Parameters:

<couplingtype></couplingtype>	AC AC coupling]
	DC DC coupling	9
	*RST:	AC
Example:	INP:COUP:	:DC
Usage:	SCPI confir	med
Manual control:	See "Input (Coupling" on page 65

INPut:FILTer:HPASs[:STATe] <State>

Activates an additional internal high-pass filter for RF input signals from 1 GHz to 3 GHz. This filter is used to remove the harmonics of the R&S FSW in order to measure the harmonics for a DUT, for example.

This function requires option R&S FSW-B13.

(Note: for RF input signals outside the specified range, the high-pass filter has no effect. For signals with a frequency of approximately 4 GHz upwards, the harmonics are suppressed sufficiently by the YIG filter.)

Parameters:

<state></state>	ON OFF	
	*RST:	OFF
Usage:	SCPI confir	med
Manual control:	See "High-F	Pass Filter 13 GHz" on page 66

INPut:FILTer:YIG[:STATe] <State>

This command turns the YIG-preselector on and off.

Note the special conditions and restrictions for the YIG filter described in "YIG-Preselector" on page 66.

Parameters:

<state></state>	ON OFF		
	*RST:	ON (OFF for I/Q Analyzer, GSM and MC Group Delay measurements)	
Example:	INP:FILT: Deactivates	YIG OFF the YIG-preselector.	
Manual control:	See "YIG-P	reselector" on page 66	

INPut:IMPedance < Impedance >

This command selects the nominal input impedance of the RF input.

75 Ω should be selected if the 50 Ω input impedance is transformed to a higher impedance using a matching pad of the RAZ type (= 25 Ω in series to the input impedance of the instrument). The power loss correction value in this case is 1.76 dB = 10 log (75 Ω /50 Ω).

The command is not available for measurements with the Digital Baseband Interface (R&S FSW-B17).

Parameters:

<impedance></impedance>	50 75		
	*RST:	50 Ω	
Example:	INP:IMP	75	
Usage:	SCPI confir	med	

Manual control: See "Impedance" on page 65

INPut:SELect <Source>

This command selects the signal source for measurements, i.e. it defines which connector is used to input data to the R&S FSW. If no additional options are installed, only RF input is supported.

Parameters:

<source/>	RF Radio Frequency ("RF INPUT" connector)		
	DIQ Digital IQ data (only available with optional Digital Baseband Inter- face R&S FSW-B17)		
	For details on I/Q input see the R&S FSW I/Q Analyzer User Man- ual.		
	*RST: RF		
Manual control:	See "Radio Frequency State" on page 65 See "Digital I/Q Input State" on page 67		

10.3.2.2 Remote Commands for the Digital Baseband Interface (R&S FSW-B17)

The following commands are required to control the Digital Baseband Interface (R&S FSW-B17) in a remote environment. They are only available if this option is installed.

Information on the STATUS:QUEStionable:DIQ register can be found in "STA-Tus:QUEStionable:DIQ Register" on page 158.

- Configuring Digital I/Q Input and Output.....153
- STATus:QUEStionable:DIQ Register.....158

Configuring Digital I/Q Input and Output

Useful commands for digital I/Q data described elsewhere:

• TRIG:SEQ:LEV:BBPTRIGger[:SEQuence]:LEVel:BBPower on page 170

$\langle \rangle$	
Ś	D

Remote commands for the R&S DiglConf software

Remote commands for the R&S DiglConf software always begin with SOURCE: EBOX. Such commands are passed on from the R&S FSW to the R&S DiglConf automatically which then configures the R&S EX-IQ-BOX via the USB connection.

All remote commands available for configuration via the R&S DigIConf software are described in the "R&S®EX-IQ-BOX Digital Interface Module R&S®DigIConf Software Operating Manual".

Example 1:

```
SOURce:EBOX:*RST
SOURce:EBOX:*IDN?
```

Result:

"Rohde&Schwarz,DiglConf,02.05.436 Build 47"

Example 2:

SOURce:EBOX:USER:CLOCk:REFerence:FREQuency 5MHZ

Defines the frequency value of the reference clock.

Remote commands exclusive to digital I/Q data input and output

INPut:DIQ:CDEVice	154
INPut:DIQ:RANGe:AUTO	155
INPut:DIQ:RANGe:COUPling	156
INPut:DIQ:RANGe[:UPPer]	
INPut:DIQ:RANGe[:UPPer]:UNIT	
INPut:DIQ:SRATe	
INPut:DIQ:SRATe:AUTO	157
OUTPut:DIQ	
OUTPut:DIQ:CDEVice	
	•••••

INPut:DIQ:CDEVice

This command queries the current configuration and the status of the digital I/Q input from the optional Digital Baseband Interface (R&S FSW-B17).

For details see the section "Interface Status Information" for the Digital Baseband Interface (R&S FSW-B17) in the R&S FSW I/Q Analyzer User Manual.

Return values:

<connstate></connstate>	Defines whether a device is connected or not.	
	0 No device is connected.	
	1 A device is connected.	
<devicename></devicename>	Device ID of the connected device	
<serialnumber></serialnumber>	Serial number of the connected device	
<portname></portname>	Port name used by the connected device	

<samplerate></samplerate>	Maximum or currently used sample rate of the connected device in Hz (depends on the used connection protocol version; indicated by <sampleratetype> parameter)</sampleratetype>
<maxtransferrate></maxtransferrate>	Maximum data transfer rate of the connected device in Hz
<connprotstate></connprotstate>	State of the connection protocol which is used to identify the con- nected device.
	Not Started
	Has to be Started
	Started
	Passed
	Failed
	Done
<prbsteststate></prbsteststate>	State of the PRBS test.
	Not Started
	Has to be Started
	Started
	Passed
	Failed
	Done
<sampleratetype></sampleratetype>	0
	Maximum sampling rate is displayed
	1 Current compliant rate is displayed
	Current sampling rate is displayed
<fullscalelevel></fullscalelevel>	The level (in dBm) that should correspond to an I/Q sample with the magnitude "1" (if transferred from connected device); If not available, 9.97e37 is returned
Example:	INP:DIQ:CDEV? Result: 1,SMU200A,103634,Out A,70000000,100000000,Passed,Not Started,0,0
Manual control:	See "Connected Instrument" on page 68

INPut:DIQ:RANGe:AUTO <State>

If enabled, the digital input full scale level is automatically set to the value provided by the connected device (if available).

This command is only available if the optional Digital Baseband interface (option R&S FSW-B17) is installed.

Parameters:

<state></state>	ON OFF	
	*RST:	OFF

Manual control: See "Full Scale Level" on page 67

INPut:DIQ:RANGe:COUPling <State>

If enabled, the reference level for digital input is adjusted to the full scale level automatically if the full scale level changes.

This command is only available if the optional Digital Baseband Interface (R&S FSW-B17) is installed.

Parameters:

<state></state>	ON OFF *RST:	OFF
Manual control:	See "Adjust	Reference Level to Full Scale Level" on page 68

INPut:DIQ:RANGe[:UPPer] <Level>

Defines or queries the "Full Scale Level", i.e. the level that corresponds to an I/Q sample with the magnitude "1".

This command is only available if the optional Digital Baseband Interface (R&S FSW-B17) is installed.

Parameters:

<level></level>	<numeric value=""></numeric>	
	Range: *RST:	1 μV to 7.071 V 1 V
Manual control:	See "Full \$	Scale Level" on page 67

INPut:DIQ:RANGe[:UPPer]:UNIT <Unit>

Defines the unit of the full scale level (see "Full Scale Level" on page 67). The availability of units depends on the measurement application you are using.

This command is only available if the optional Digital Baseband Interface (R&S FSW-B17) is installed.

Parameters:

<level></level>	VOLT DBM DBPW WATT DBMV DBUV DBUA AMPere
	*RST: Volt
Manual control:	See "Full Scale Level" on page 67

INPut:DIQ:SRATe <SampleRate>

This command specifies or queries the sample rate of the input signal from the Digital Baseband Interface (R&S FSW-B17, see "Input Sample Rate" on page 67).

Parameters:	
<samplerate></samplerate>	Ran

<samplerate></samplerate>	Range: *RST:	1 Hz to 10 GHz 32 MHz
Example:	INP:DIQ:SF	RAT 200 MHz
Manual control:	See "Input Sample Rate" on page 67	

INPut:DIQ:SRATe:AUTO <State>

If enabled, the sample rate of the digital I/Q input signal is set automatically by the connected device.

This command is only available if the optional Digital Baseband Interface (R&S FSW-B17) is installed.

Parameters:

<state></state>	ON OFF	
	*RST:	OFF
Manual control:	See "Input S	Sample Rate" on page 67

OUTPut:DIQ <State>

This command turns continuous output of I/Q data to the Digital Baseband Interface (R&S FSW-B17) on and off.

Using the digital input and digital output simultaneously is not possible.

Parameters: <state></state>	ON OFF	
	*RST:	OFF
Example:	OUTP:DIQ	ON
Manual control:	See "Digital	Baseband Output" on page 71

OUTPut:DIQ:CDEVice

This command queries the current configuration and the status of the digital I/Q data output to the optional Digital Baseband Interface (R&S FSW-B17).

Return	va	lues:
--------	----	-------

<connstate></connstate>	Defines whether a device is connected or not.	
	0	
	No device is connected.	
	1	
	A device is connected.	
<devicename></devicename>	Device ID of the connected device	
<serialnumber></serialnumber>	Serial number of the connected device	
<portname></portname>	Port name used by the connected device	

<notused></notused>	to be imported
	to be ignored
<maxtransferrate></maxtransferrate>	Maximum data transfer rate of the connected device in Hz
<connprotstate></connprotstate>	State of the connection protocol which is used to identify the con- nected device.
	Not Started
	Has to be Started
	Started
	Passed
	Failed
	Done
<prbsteststate></prbsteststate>	State of the PRBS test.
	Not Started
	Has to be Started
	Started
	Passed
	Failed
	Done
<notused></notused>	to be ignored
<placeholder></placeholder>	for future use; currently "0"
Example:	OUTP:DIQ:CDEV? Result: 1,SMU200A,103634,Out A,70000000,10000000,Passed,Not Started,0,0
Manual control:	See "Output Settings Information" on page 71 See "Connected Instrument" on page 72

STATus:QUEStionable:DIQ Register

This register contains information about the state of the digital I/Q input and output. This register is available with option Digital Baseband Interface (R&S FSW-B17)Digital Baseband Interface (R&S FSW-B17).

The status of the STATUS:QUESTionable:DIQ register is indicated in bit 14 of the STATUS:QUESTionable register.

You can read out the state of the register with STATUS:QUEStionable:DIQ: CONDition? on page 159 and STATUS:QUEStionable:DIQ[:EVENt]? on page 160.

Bit No.	Meaning
0	Digital I/Q Input Device connected
	This bit is set if a device is recognized and connected to the Digital Baseband Interface of the analyzer.
1	Digital I/Q Input Connection Protocol in progress
	This bit is set while the connection between analyzer and digital baseband data signal source (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.
2	Digital I/Q Input Connection Protocol error
	This bit is set if an error occurred during establishing of the connect between analyzer and digital I/Q data signal source (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.
3-5	not used
6	Digital I/Q Input FIFO Overload
	This bit is set if the input transfer rate is too high.
7	not used
8	Digital I/Q Output Device connected
	This bit is set if a device is recognized and connected to the Digital I/Q Output.
9	Digital I/Q Output Connection Protocol in progress
	This bit is set while the connection between analyzer and digital I/Q data signal source (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.
10	Digital I/Q Output Connection Protocol error
	This bit is set if an error occurred while the connection between analyzer and digital I/Q data signal source (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.
11-14	not used
15	This bit is always set to 0.

STATus:QUEStionable:DIQ:CONDition?	.159
STATus:QUEStionable:DIQ:ENABle	160
STATus:QUEStionable:DIQ:NTRansition	.160
STATus:QUEStionable:DIQ:PTRansition	.160
STATus:QUEStionable:DIQ[:EVENt]?	

STATus:QUEStionable:DIQ:CONDition? < ChannelName>

This command reads out the CONDition section of the STATus:QUEStionable:DIQ:CONDition status register.

The command does not delete the contents of the EVENt section.

Query parameters: <channelname></channelname>	String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.
Example:	STAT:QUES:DIQ:COND?
Usage:	Query only

STATus:QUEStionable:DIQ:ENABle <SumBit>,<ChannelName>

This command controls the ENABle part of a register.

The ENABle part allows true conditions in the EVENt part of the status register to be reported in the summary bit. If a bit is 1 in the enable register and its associated event bit transitions to true, a positive transition will occur in the summary bit reported to the next higher level.

Parameters:

<channelname></channelname>	String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.	
Setting parameters: <sumbit></sumbit>	Range:	0 to 65535
Usage:	SCPI confirm	ned

STATus:QUEStionable:DIQ:NTRansition <SumBit>,<ChannelName>

This command controls the Negative TRansition part of a register.

Setting a bit causes a 1 to 0 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters:

<ChannelName> String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.

Setting parameters:

<SumBit> Range: 0 to 65535

STATus:QUEStionable:DIQ:PTRansition <SumBit>,<ChannelName>

This command controls the Positive TRansition part of a register.

Setting a bit causes a 0 to 1 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters:

<ChannelName> String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.

Setting parameters:

<SumBit> Range: 0 to 65535

STATus:QUEStionable:DIQ[:EVENt]? < ChannelName>

This command queries the contents of the "EVENt" section of the STATus:QUEStionable:DIQ register for IQ measurements.

Readout deletes the contents of the "EVENt" section.

Query parameters: <channelname></channelname>	String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.
Example:	STAT:QUES:DIQ?
Usage:	Query only

10.3.2.3 Configuring the Outputs

Configuring trigger input/output is described in chapter 10.3.4.2, "Configuring the Trigger Output", on page 174.

DIAGnostic <n>:SERVice:NSOurce</n>	
OUTPut:DIQ	

DIAGnostic<n>:SERVice:NSOurce <State>

This command turns the 28 V supply of the BNC connector labeled NOISE SOURCE CONTROL on the front panel on and off.

Parameters:

<state></state>	ON OFF		
	*RST:	OFF	
Example:	DIAG:SERV	:NSO ON	
Manual control:	See "Noise Source" on page 69		

OUTPut:DIQ <State>

This command turns continuous output of I/Q data to the Digital Baseband Interface (R&S FSW-B17) on and off.

Using the digital input and digital output simultaneously is not possible.

Parameters: <state></state>	ON OFF	
	*RST:	OFF
Example:	OUTP:DIQ	ON
Manual control:	See "Digital	Baseband Output" on page 71

_

10.3.3 Frontend Configuration

The following commands configure frequency, amplitude and y-axis scaling settings, which represent the "frontend" of the measurement setup.

- - Configuring the Attenuation......166

10.3.3.1 Frequency

[SENSe:]FREQuency:CENTer	162
[SENSe:]FREQuency:CENTer:STEP	
[SENSe:]FREQuency:CENTer:STEP:AUTO	
[SENSe:]FREQuency:OFFSet	

[SENSe:]FREQuency:CENTer <Frequency>

This command defines the center frequency.

Parameters:			
<frequency></frequency>	The allowed range and f _{max} is specified in the data sheet.		
	UP Increases the center frequency by the step defined using the [SENSe:]FREQuency:CENTer:STEP command.		
	DOWN		
	Decreases the center frequency by the step defined using the		
	[SENSe:]FREQuency:CENTer:STEP command.		
	*RST: fmax/2 Default unit: Hz		
Example:	FREQ:CENT 100 MHz FREQ:CENT:STEP 10 MHz FREQ:CENT UP Sets the center frequency to 110 MHz.		
Usage:	SCPI confirmed		
Manual control:	See "Center" on page 77		

[SENSe:]FREQuency:CENTer:STEP <StepSize>

This command defines the center frequency step size.

You can increase or decrease the center frequency quickly in fixed steps using the SENS:FREQ UP AND SENS:FREQ DOWN commands, see [SENSe:]FREQuency: CENTer on page 162.

Parameters:	
< Ctop Cines	

_

_

.

<stepsize></stepsize>	f _{max} is specified in the data sheet.	
	Range: *RST: Default unit:	
Example:	FREQ:CENI	:STEP 10 MHz
Manual control:	See "Center	Frequency Stepsize" on page 77

[SENSe:]FREQuency:CENTer:STEP:AUTO <State>

This command couples or decouples the center frequency step size to the span.

Parameters:	
<state></state>	ON OFF
	*RST: ON
Example:	FREQ:CENT:STEP:AUTO ON Activates the coupling of the step size to the span.

[SENSe:]FREQuency:OFFSet < Offset>

This command defines a frequency offset.

If this value is not 0 Hz, the application assumes that the input signal was frequency shifted outside the application. All results of type "frequency" will be corrected for this shift numerically by the application.

See also "Frequency Offset" on page 78.

Parameters: <offset></offset>	Range: *RST:	-100 GHz to 100 GHz 0 Hz
Example:	FREQ:OFFS	3 1GHZ
Usage:	SCPI confirmed	
Manual control:	See "Frequency Offset" on page 78	

10.3.3.2 Amplitude Settings

The following commands are required to configure the amplitude settings in a remote environment.

Useful commands for amplitude settings described elsewhere:

- INPut:COUPling on page 151
- INPut: IMPedance on page 152

• [SENSe:]ADJust:LEVel on page 196

Remote commands exclusive to amplitude settings:

DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:AUTO ONCE</n>	164
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:MAXimum</n>	164
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:MINimum</n>	164
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:PDIVision</n>	165
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:RLEVel</n>	165
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:RLEVel:OFFSet</n>	165
INPut:GAIN:STATe	165
INPut:GAIN[:VALue]	166

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:AUTO ONCE

Automatic scaling of the y-axis is performed once, then switched off again.

Usage:	SCPI confirmed
Manual control:	See "Auto Scale Once" on page 76

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:MAXimum <Value>

This command defines the maximum value of the y-axis for the selected result display.

Parameters: <value></value>	<numeric value=""> *RST: depends on the result display The unit and range depend on the result display.</numeric>
Example:	DISP:TRAC:Y:MIN -60 DISP:TRAC:Y:MAX 0 Defines the y-axis with a minimum value of -60 and maximum value of 0.
Manual control:	See "Y-Maximum, Y-Minimum" on page 76

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:MINimum <Value>

This command defines the minimum value of the y-axis for the selected result display.

Parameters: <value></value>	<numeric value=""></numeric>	
	*RST: depends on the result display The unit and range depend on the result display.	
Example:	DISP:TRAC:Y:MIN -60 DISP:TRAC:Y:MAX 0 Defines the y-axis with a minimum value of -60 and maximum value of 0.	
Manual control:	See "Y-Maximum, Y-Minimum" on page 76	

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:PDIVision <Value>

This remote command determines the grid spacing on the Y-axis for all diagrams, where possible.

Parameters: <value></value>		ue; the unit depends on the result display range per division (total range = 10* <value>) depends on the result display</value>
Example:	Sets the grid	C:Y:PDIV 10 d spacing to 10 units (e.g. dB) per division le 10 dB in the Code Domain Power result display.)

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:RLEVel <ReferenceLevel>

This command defines the reference level.

With a reference level offset \neq 0, the value range of the reference level is modified by the offset.

Parameters:

<referencelevel></referencelevel>	The unit is variable.	
	Range: *RST:	see datasheet 0 dBm
Example:	DISP:TRAC	:Y:RLEV -60dBm
Usage:	SCPI confirm	ned
Manual control:	See "Refere	nce Level" on page 73

DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:RLEVel:OFFSet <Offset>

This command defines a reference level offset.

Parameters: <offset></offset>	Range: *RST:	-200 dB to 200 dB 0dB	
Example:	DISP:TRAC:Y:RLEV:OFFS -10dB		
Manual control:	See "Reference Level" on page 73 See "Shifting the Display (Offset)" on page 73		

INPut:GAIN:STATe <State>

This command turns the preamplifier on and off.

The command requires option R&S FSW-B24.

This function is not available for input from the Digital Baseband Interface (R&S FSW-B17).

For R&S FSW 26 models, the input signal is amplified by 30 dB if the preamplifier is activated.

For R&S FSW 8 or 13 models, the preamplification is defined by INPut:GAIN[: VALue].

Parameters:		
<state></state>	ON OFF	
	*RST:	OFF
Example:	INP:GAIN:STAT ON	
	Switches on	30 dB preamplification.
Usage:	SCPI confirm	ned
Manual control:		ettings" on page 75 blifier (option B24)" on page 75

INPut:GAIN[:VALue] <Gain>

This command selects the preamplification level if the preamplifier is activated (INP:GAIN:STAT ON, see INPut:GAIN:STATe on page 165).

The command requires option R&S FSW-B24.

Parameters:

<gain></gain>	15 dB 30 dB		
	The availability of preamplification levels depends on the R&S FSW model.		
	R&S FSW8: 15dB and 30 dB		
	 R&S FSW13: 15dB and 30 dB 		
	• R&S FSW26: 30 dB		
	All other values are rounded to the nearest of these two.		
	*RST: OFF		
Example:	INP:GAIN:VAL 30		
	Switches on 30 dB preamplification.		
Usage:	SCPI confirmed		
Manual control:	See "Input Settings" on page 75		

10.3.3.3 Configuring the Attenuation

INPut:ATTenuation	
INPut:ATTenuation:AUTO	
INPut:EATT	
INPut:EATT:AUTO	
INPut:EATT:STATe	

See "Preamplifier (option B24)" on page 75

INPut:ATTenuation < Attenuation>

D - - - - - 4 -

This command defines the total attenuation for RF input.

If an electronic attenuator is available and active, the command defines a mechanical attenuation (see INPut:EATT:STATe on page 168).

If you set the attenuation manually, it is no longer coupled to the reference level, but the reference level is coupled to the attenuation. Thus, if the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

This function is not available if the Digital Baseband Interface (R&S FSW-B17) is active.

Parameters: <attenuation></attenuation>	Range: Increment: *RST:	see data sheet 5 dB 10 dB (AUTO is set to ON)
Example:	INP:ATT 30dB Defines a 30 dB attenuation and decouples the attenuation from the reference level.	
Usage:	SCPI confirmed	
Manual control:	See "RF Attenuation" on page 74 See "Attenuation Mode / Value" on page 74	

INPut:ATTenuation:AUTO <State>

This command couples or decouples the attenuation to the reference level. Thus, when the reference level is changed, the R&S FSW determines the signal level for optimal internal data processing and sets the required attenuation accordingly.

This function is not available if the Digital Baseband Interface (R&S FSW-B17) is active.

Parameters: <state></state>		
	*RST: ON	
Example:	INP:ATT:AUTO ON Couples the attenuation to the reference level.	
Usage:	SCPI confirmed	
Manual control:	See "RF Attenuation" on page 74 See "Attenuation Mode / Value" on page 74	

INPut:EATT <Attenuation>

This command defines an electronic attenuation manually. Automatic mode must be switched off (INP:EATT:AUTO OFF, see INPut:EATT:AUTO on page 168).

If the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

This command is only available with option R&S FSW-B25.

It is not available if R&S FSW-B17 is active.

Parameters: <pre><attenuation></attenuation></pre>	attenuation in dB		
	Range: Increment: *RST:	see data sheet 1 dB 0 dB (OFF)	
Example:	INP:EATT:AUTO OFF INP:EATT 10 dB		
Manual control:	See "Using	Electronic Attenuation (Option B25)" on page 75	

INPut:EATT:AUTO <State>

This command turns automatic selection of the electronic attenuation on and off. If on, electronic attenuation reduces the mechanical attenuation whenever possible. This command is only available with option R&S FSW-B25.

It is not available if R&S FSW-B17 is active.

Parameters:

<state></state>	ON OFF	
	*RST:	ON
Example:	INP:EATT:	AUTO OFF
Manual control:	See "Using	Electronic Attenuation (Option B25)" on page 75

INPut:EATT:STATe <State>

This command turns the electronic attenuator on and off.

This command is only available with option R&S FSW-B25.

It is not available if R&S FSW-B17 is active.

Parameters:

<state></state>	ON OFF
	*RST: OFF
Example:	INP:EATT:STAT ON Switches the electronic attenuator into the signal path.
Manual control:	See "Using Electronic Attenuation (Option B25)" on page 75

10.3.4 Configuring Triggered Measurements

The following commands are required to configure a triggered measurement in a remote environment. The tasks for manual operation are described in chapter 5.2.6, "Trigger Settings", on page 78.

The *OPC command should be used after commands that retrieve data so that subsequent commands to change the selected trigger source are held off until after the sweep is completed and the data has been returned.

•	Configuring the Triggering Conditions16	39
•	Configuring the Trigger Output17	74

10.3.4.1 Configuring the Triggering Conditions

TRIGger[:SEQuence]:DTIMe	169
TRIGger[:SEQuence]:HOLDoff[:TIME]	169
TRIGger[:SEQuence]:IFPower:HOLDoff	170
TRIGger[:SEQuence]:IFPower:HYSTeresis	170
TRIGger[:SEQuence]:LEVel:BBPower	170
TRIGger[:SEQuence]:LEVel[:EXTernal <port>]</port>	170
TRIGger[:SEQuence]:LEVel:IFPower	171
TRIGger[:SEQuence]:LEVel:IQPower	171
TRIGger[:SEQuence]:LEVel:RFPower	171
TRIGger[:SEQuence]:LEVel:VIDeo	172
TRIGger[:SEQuence]:SLOPe	
TRIGger[:SEQuence]:SOURce	172
TRIGger[:SEQuence]:TIME:RINTerval	173

TRIGger[:SEQuence]:DTIMe <DropoutTime>

Defines the time the input signal must stay below the trigger level before a trigger is detected again.

Parameters:

<dropouttime></dropouttime>	Dropout time of the trigger.	
	Range: *RST:	0 s to 10.0 s 0 s
Manual control:		er Source" on page 79 Out Time" on page 81

TRIGger[:SEQuence]:HOLDoff[:TIME] <Offset>

Defines the time offset between the trigger event and the start of the sweep (data capturing).

Parameters:		
<offset></offset>	*RST:	0 s
Example:	TRIG:HC	DLD 500us
Manual control:		ger Source" on page 79 ger Offset" on page 81

TRIGger[:SEQuence]:IFPower:HOLDoff <Period>

This command defines the holding time before the next trigger event.

Note that this command is available for any trigger source, not just IF Power.

Note: If you perform gated measurements in combination with the IF Power trigger, the R&S FSW ignores the holding time for frequency sweep, FFT sweep, zero span and I/Q data measurements.

Parameters: <period></period>	*RST:	150 ns
Example:	TRIG: IFP:	N IFP power trigger source. HOLD 200 ns Iding time to 200 ns.
Manual control:		r Source" on page 79 r Holdoff" on page 81

TRIGger[:SEQuence]:IFPower:HYSTeresis <Hysteresis>

This command defines the trigger hysteresis.

Parameters: <hysteresis></hysteresis>	Range: *RST:	3 dB to 50 dB 3 dB
Example:	TRIG: IFP:	R IFP power trigger source. HYST 10DB steresis limit value.
Manual control:		r Source" on page 79 resis" on page 81

TRIGger[:SEQuence]:LEVel:BBPower <Level>

This command sets the level of the baseband power trigger.

This command is available with the Digital Baseband Interface (R&S FSW-B17).

P	aran	neters:	

<level></level>	Range: *RST:	-50 dBm to +2 -20 DBM	20 dBm
Example:	TRIG:LE	V:BB -30DBM	

TRIGger[:SEQuence]:LEVel[:EXTernal<port>] <TriggerLevel>

This command defines the level the external signal must exceed to cause a trigger event.

Note that the variable INPUT/OUTPUT connectors (ports 2+3) must be set for use as input using the OUTPut:TRIGger<port>:DIRection command.

Suffix:			
<port></port>	1 2 3		
	Selects the	trigger port.	
	1 = trigger	port 1 (TRIGGER INPUT connector on front panel)	
	2 = trigger port 2 (TRIGGER INPUT/OUTPUT connector on front panel)		
	3 = trigger port 3 (TRIGGER3 INPUT/OUTPUT connector on rear panel)		
Parameters:			
<triggerlevel></triggerlevel>	Range:	0.5 V to 3.5 V	
00	*RST:	1.4 V	
Example:	TRIG:LEV	2V	
Manual control:	See "Trigger Source" on page 79 See "Trigger Level" on page 81		

TRIGger[:SEQuence]:LEVel:IFPower <TriggerLevel>

This command defines the power level at the third intermediate frequency that must be exceeded to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed.

Parameters:

<TriggerLevel> Range: -50 dBm to 20 dBm *RST: -20 dBm Example: TRIG:LEV:IFP -30DBM

TRIGger[:SEQuence]:LEVel:IQPower <TriggerLevel>

This command defines the magnitude the I/Q data must exceed to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed.

Parameters:

<triggerlevel></triggerlevel>	Range: *RST:	-130 dBm to 30 dBm -20 dBm
Example:	TRIG:LEV:	IQP -30DBM

TRIGger[:SEQuence]:LEVel:RFPower <TriggerLevel>

This command defines the power level the RF input must exceed to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed.

The input signal must be between 500 MHz and 8 GHz.

Parameters:

<triggerlevel></triggerlevel>	Range: *RST:	-50 dBm to -10 dBm -20 dBm
Example:	TRIG:LEV:	RFP -30dBm

TRIGger[:SEQuence]:LEVel:VIDeo <Level>

This command defines the level the video signal must exceed to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed.

Parameters:

<level></level>	Range: *RST:	0 PCT to 100 PCT 50 PCT
Example:	TRIG:LEV:	VID 50PCT

TRIGger[:SEQuence]:SLOPe <Type>

For all trigger sources except time you can define whether triggering occurs when the signal rises to the trigger level or falls down to it.

Parameters: <Tvpe>

<type></type>	POSitive N	NEGative
	POSitive Triggers when the signal rises to the trigger level (rising edge). NEGative Triggers when the signal drops to the trigger level (falling edge *RST: POSitive	
Example:	TRIG:SLOP	P NEG
Manual control:		er <mark>Source</mark> " on page 79 " on page 82

TRIGger[:SEQuence]:SOURce <Source>

This command selects the trigger source.

Note on external triggers:

If a measurement is configured to wait for an external trigger signal in a remote control program, remote control is blocked until the trigger is received and the program can continue. Make sure this situation is avoided in your remote control programs.

Parameters:	
<source/>	IMMediate Free Run
	EXTern
	Trigger signal from the TRIGGER INPUT connector.
	EXT2 Trigger signal from the TRIGGER INPUT/OUTPUT connecto Note: Connector must be configured for "Input".
	EXT3
	Trigger signal from the TRIGGER 3 INPUT/ OUTPUT connection Note: Connector must be configured for "Input".
	IFPower
	Second intermediate frequency
	TIME
	Time interval
	BBPower
	Baseband power (for digital input via the Digital Baseband In face R&S FSW-B17)
	GP0 GP1 GP2 GP3 GP4 GP5 For applications that process I/Q data, such as the I/Q Analyz or optional applications, and only if the Digital Baseband Inter (R&S FSW-B17) is available.
	Defines triggering of the measurement directly via the LVDS of nector. The parameter specifies which general purpose bit (0 the will provide the trigger data.
	The assignment of the general purpose bits used by the Digita trigger to the LVDS connector pins is provided in "Digital I/Q" on page 80.
	*RST: IMMediate
Example:	TRIG:SOUR EXT Selects the external trigger input as source of the trigger sign
Manual control:	See "Trigger Source" on page 79
	See "Trigger Source" on page 79
	See "Free Run" on page 80
	See "External Trigger 1/2/3" on page 80

TRIGger[:SEQuence]:TIME:RINTerval <Interval>

This command defines the repetition interval for the time trigger.

Parameters:

<Interval>

2.0 ms to 5000 Range: 2 ms to 5000 s *RST: 1.0 s

Example: TRIG: SOUR TIME Selects the time trigger input for triggering. TRIG: TIME: RINT 50 The sweep starts every 50 s.

10.3.4.2 Configuring the Trigger Output

The following commands are required to send the trigger signal to one of the variable TRIGGER INPUT/OUTPUT connectors. The tasks for manual operation are described in "Trigger 2/3" on page 69.

OUTPut:TRIGger <port>:DIRection</port>	'4
OUTPut:TRIGger <port>:LEVel</port>	
OUTPut:TRIGger <port>:OTYPe</port>	
OUTPut:TRIGger <port>:PULSe:IMMediate</port>	
OUTPut:TRIGger <port>:PULSe:LENGth</port>	
00	-

OUTPut:TRIGger<port>:DIRection < Direction>

This command selects the trigger direction.

Suffix: <port></port>	2 3 Selects the trigger port to which the output is sent. 2 = trigger port 2 (front) 3 = trigger port 3 (rear)
Parameters: <direction></direction>	INPut Port works as an input.
	OUTPut Port works as an output. *RST: INPut
Manual control:	See "Trigger 2/3" on page 69

OUTPut:TRIGger<port>:LEVel <Level>

This command defines the level of the signal generated at the trigger output.

This command works only if you have selected a user defined output with OUTPut: TRIGger<port>:OTYPe.

Suffix:

<port>

2 | 3 Selects the trigger port to which the output is sent. 2 = trigger port 2 (front) 3 = trigger port 3 (rear)

Parameters:		
<level></level>	HIGH	
	TTL signal.	
	LOW 0 V	
	*RST:	LOW
Manual control:	See "Outpu	er 2/3" on page 69 t Type" on page 70 ' on page 70

OUTPut:TRIGger<port>:OTYPe <OutputType>

This command selects the type of signal generated at the trigger output.

Suffix: <port></port>	2 3 Selects the trigger port to which the output is sent. 2 = trigger port 2 (front) 3 = trigger port 3 (rear)			
Parameters:				
<outputtype></outputtype>	DEVice			
	Sends a trigger signal when the R&S FSW has triggered internally.			
	TARMed			
	Sends a trigger signal when the trigger is armed and ready for an external trigger event.			
	UDEFined			
	Sends a user defined trigger signal. For more information see			
	OUTPut:TRIGger <port>:LEVel</port>			
	*RST: DEVice			
Manual control:	See "Trigger 2/3" on page 69 See "Output Type" on page 70			

OUTPut:TRIGger<port>:PULSe:IMMediate

This command generates a pulse at the trigger output.

Suffix: <port></port>	2 3 Selects the trigger port to which the output is sent. 2 = trigger port 2 (front) 3 = trigger port 3 (rear)
Usage:	Event
Manual control:	See "Trigger 2/3" on page 69 See "Output Type" on page 70 See "Send Trigger" on page 70

OUTPut:TRIGger<port>:PULSe:LENGth <Length>

This command defines the length of the pulse generated at the trigger output.

2 3 Selects the trigger port to which the output is sent. 2 = trigger port 2 (front) 3 = trigger port 3 (rear)
Pulse length in seconds.
See "Trigger 2/3" on page 69 See "Output Type" on page 70 See "Pulse Length" on page 70

10.3.5 Signal Capturing

The following commands are required to configure how much and how data is captured from the input signal.

MSRA operating mode

In MSRA operating mode, only the MSRA Master channel actually captures data from the input signal. The data acquisition settings for the 3GPP FDD application in MSRA mode define the **application data** (see chapter 10.9, "Configuring the Application Data Range (MSRA mode only)", on page 249).

For details on the MSRA operating mode see the R&S FSW MSRA User Manual.

Useful commands for configuring data acquisition described elsewhere:

• [SENSe:]CDPower:FRAMe[:VALue] on page 197

Remote commands exclusive to signal capturing:

[SENSe:]CDPower:BASE	176
[SENSe:]CDPower:FILTer[:STATe]	
[SENSe:]CDPower:IQLength	177
[SENSe:]CDPower:QINVert	
[SENSe:]CDPower:SBANd	

[SENSe:]CDPower:BASE <BaseValue>

This command defines the base of the CDP analysis.

Parameters: <basevalue></basevalue>	SLOT FRAMe		
	SLOT Only one slot of the signal is analyzed.		
	FRAMe The complete 3GPP frame is analyzed.		
	*RST: FRAMe		
Example:	CDP:BASE SLOT		
Mode:	UE application only		
Manual control:	See "Analysis Mode (UE measurements only)" on page 84		

[SENSe:]CDPower:FILTer[:STATe] <State>

This command selects if a root raised cosine (RRC) receiver filter is used or not. This feature is useful if the RRC filter is implemented in the device under test (DUT).

Parameters:

<state></state>	ON If an unfiltered WCDMA signal is received (normal case), the RRC filter should be used to get a correct signal demodulation.
	OFF If a filtered WCDMA signal is received, the RRC filter should not be used to get a correct signal demodulation. This is the case if the DUT filters the signal.
	*RST: ON
Example:	SENS:CDP:FILT:STAT OFF
Manual control:	See "RRC Filter State" on page 84

[SENSe:]CDPower:IQLength <CaptureLength>

This command specifies the number of frames that are captured by one sweep.

Parameters: <capturelength></capturelength>	Range: *RST:	1 to 100 1
Example:	SENS:CDP:IQLength 3	
Manual control:	See "Captur	re Length (Frames)" on page 84

[SENSe:]CDPower:QINVert <State>

This command inverts the Q-branch of the signal.

Parameters:

ON | OFF *RST: OFF

Example:	CDP:QINV ON
	Activates inversion of Q-branch

Manual control: See "Invert Q" on page 84

[SENSe:]CDPower:SBANd <NORMal | INVers>

This command is used to swap the left and right sideband.

Parameters: <normal invers="" =""></normal>	*RST:	NORM
Example:	CDP:SBAN Switches the	INV e right and left sideband.

10.3.6 Synchronization

For BTS tests, the individual channels in the input signal need to be synchronized to detect timing offsets in the slot spacings. These commands are described here, they are only available in the 3GPP FDD BTS application

Useful commands for synchronization described elsewhere:

• [SENSe:]CDPower:ANTenna on page 146

Remote commands exclusive to synchronization:

[SENSe:]CDPower:STYPe	178
[SENSe:]CDPower:UCPich:CODE	
[SENSe:]CDPower:UCPich:PATTern	
[SENSe:]CDPower:UCPich[:STATe]	
	•••••

[SENSe:]CDPower:STYPe <Type>

This command selects the type of synchronization.

Parameters:

<type></type>	CPICh SCHannel	
	CPICh Synchronization is carried out to CPIC	H. For this type of synchro-
	Synchronization is carried out to CPICH. For this type of synchro- nization, the CPICH must be available in the input signal.	
	SCHannel Synchronization is carried out without CPICh. This type of syn- chronization is required for test model 4 without CPICH. *RST: CPICh	
Example:	SENS:CDP:STYP SCH	
Mode:	BTS application only	
Manual control:	See "Synchronization Type" on page 8	36

[SENSe:]CDPower:UCPich:CODE <CodeNumber>

This command sets the code number of the user defined CPICH used for signal analysis.

Parameters: <codenumber></codenumber>	Range: *RST:	0 to 225 0
Example:	SENS:CDP:UCP:CODE 10	
Mode:	BTS application only	
Manual control:	See "Antenna1 / Antenna2" on page 86 See "S-CPICH Code Nr" on page 87	

[SENSe:]CDPower:UCPich:PATTern <Pattern>

This command defines which pattern is used for signal analysis for the user-defined CPICH (see [SENSe:]CDPower:UCPich[:STATe] on page 179).

Parameters:

<pattern></pattern>	OFF 1 2	
	OFF	
	pattern selection according to the antenna selection	
	1	
	fixed usage of "Pattern 1" according to standard	
	2	
	fixed usage of "Pattern 2" according to standard	
	*RST: OFF	
Example:	SENS:CDP:UCP:PATT 1	
Mode:	BTS application only	
Manual control:	See "S-CPICH Antenna Pattern" on page 87	

[SENSe:]CDPower:UCPich[:STATe] <State>

Defines whether the common pilot channel (CPICH) is defined by a user-defined position instead of its default position.

if enabled, the user-defined position must be defined using [SENSe:]CDPower: UCPich:CODE on page 179.

Parameters: <state></state>	ON OFF *RST:	OFF
Example:	SENS:CDP:	UCP ON
Mode:	BTS applica	tion only
Manual control:	See "Antenna1 / Antenna2" on page 86 See "CPICH Mode" on page 86	

10.3.7 Channel Detection

The channel detection settings determine which channels are found in the input signal. The commands for working with channel tables are described here.

When the channel type is required as a parameter by a remote command or provided as a result for a remote query, the following abbreviations and assignments to a numeric value are used:

Param.	Channel type	Description
0	DPCH	Dedicated Physical Channel of a standard frame
1	PICH	Paging Indication Channel
2	СРІСН	Common Pilot Channel
3	PSCH	Primary Synchronization Channel
4	SSCH	Secondary Synchronization Channel
5	РССРСН	Primary Common Control Physical Channel
6	SCCPCH	Secondary Common Control Physical Channel
7	HS_SCCH	HSDPA: High Speed Shared Control Channel
8	HS_PDSCH	HSDPA: High Speed Physical Downlink Shared Channel
9	CHAN	Channel without any pilot symbols (QPSK modulated)
10	CPRSD	Dedicated Physical Channel in compressed mode
11	CPR-TPC	Dedicated Physical Channel in compressed mode
		TPC symbols are sent in the first slot of the gap.
12	CPR-SF/2	Dedicated Physical Channel in compressed mode using
		half spreading factor (SF/2).
13	CPR-SF/2-	Dedicated Physical Channel in compressed mode using
	TPC	half spreading factor (SF/2).
		TPC symbols are sent in the first slot of the gap.
	EHICH-	HSUPA: Enhanced HARQ Hybrid Acknowledgement Indicator Channel
	ERGCH	HSUPA: Enhanced Relative Grant Channel
15	EAGCH	E-AGCH: Enhanced Absolute Grant Channel
16	SCPICH	Secondary Common Pilot Channel

Table 10-3: BTS channel types and their assignment to a numeric parameter value

Table 10-4: UE channel types and their assignment to a numeric parameter value

Param.	Channel type	Description
0	DPDCH	Dedicated Physical Data Channel
1	DPCCH	Dedicated Physical Control Channel
2	HS-DPCCH	High-Speed Dedicated Physical Control Channel

Param.	Channel type	Description
3	E-DPCCH	Enhanced Dedicated Physical Control Channel
4	E_DPDCH	Enhanced Dedicated Physical Data Channel

- General Channel Detection.....181
- Managing Channel Tables......
 183

- Configuring Channel Details (UE Measurements)......190

10.3.7.1 General Channel Detection

The following commands configure how channels are detected in general.

Useful commands for general channel detection described elsewhere:

- CONFigure:WCDPower[:BTS]:CTABle[:STATe] on page 183
- CONFigure:WCDPower[:BTS]:CTABle:SELect on page 185
- CONFigure:WCDPower:MS:CTABle[:STATe] on page 185
- CONFigure:WCDPower:MS:CTABle:SELect on page 186

Remote commands exclusive to general channel detection:

CONFigure:WCDPower[:BTS]:CTABle:COMPare	181
CONFigure:WCDPower[:BTS]:CTABle:TOFFset	182
[SENSe:]CDPower:ICTReshold	

CONFigure:WCDPower[:BTS]:CTABle:COMPare <State>

This command switches between normal predefined mode and predefined channel table compare mode.

In the compare mode a predefined channel table model can be compared with the measurement in respect to power, pilot length and timing offset of the active channels.

Comparision is a submode of predefined channel table measurement. It only influences the measurement if the "Channel Search Mode" is set to *Predefined* (see CONFigure: WCDPower[:BTS]:CTABle[:STATe] on page 183). If the compare mode is selected, the power values, pilot lengths and timing offsets are measured and are compared with the values from the predefined channel table. The "Timing Offset" setting is disabled in this case. The differences between the measured and the predefined values are visualized in the corresponding columns of the "CHANNEL TABLE" evaluation (see "Channel Table" on page 16). The following columns are displayed in the channel table:

- PilotL is the substraction of PilotLengthMeasured PilotLengthPredefined
- PwrRel is the substraction of PowerRelMeasured PowerRelPredefined
- T Offs is the substraction of TimingOffsetMeasured TimingOffsetPredefined

For non-active channels dashes are shown.

Parameters: <state></state>	ON OFF	
	ON predefined channel table compare mode	
	OFF normal predefined mode *RST: OFF	
Example:	CONF:WCDP:CTAB:COMP ON	
Mode:	BTS application only	
Manual control:	See "Comparing the Measurement Signal with the Predefined Channel Table" on page 89	

CONFigure:WCDPower[:BTS]:CTABle:TOFFset <Mode>

This command specifies whether the timing offset and pilot length are measured or if the values are taken from the predefined table.

Parameters: <mode></mode>	PRED MEAS PRED The timing offset and pilot length values from the predefined table are used. MEAS The timing offset and the pilot length are measured by the appli- cation. The channel configuration is specified via the predefined channel table.
Example:	CONF:WCDP:CTAB:TOFF MEAS
Mode:	BTS application only
Manual control:	See "Timing Offset Reference" on page 89

[SENSe:]CDPower:ICTReshold <ThresholdLevel>

This command defines the minimum power that a single channel must have compared to the total signal in order to be regarded as an active channel. Channels below the specified threshold are regarded as "inactive".

Parameters: <thresholdlevel></thresholdlevel>	Range: *RST:	-100 dB to 0 dB -60 dB
Example:	SENS:CDP:	ICTR -100
Mode:	BTS applica	ation only
Manual control:	See "Inactiv on page 88	ve Channel Threshold (BTS measurements only)"

10.3.7.2 Managing Channel Tables

CONFigure:WCDPower[:BTS]:CTABle[:STATe]	183
CONFigure:WCDPower[:BTS]:CTABle:CATalog?	
CONFigure:WCDPower[:BTS]:CTABle:COPY.	184
CONFigure:WCDPower[:BTS]:CTABle:DELete	184
CONFigure:WCDPower[:BTS]:CTABle:SELect	
CONFigure:WCDPower:MS:CTABle[:STATe]	185
CONFigure:WCDPower:MS:CTABle:CATalog?	185
CONFigure:WCDPower:MS:CTABle:COPY	
CONFigure:WCDPower:MS:CTABle:DELete	
CONFigure:WCDPower:MS:CTABle:SELect	
-	

CONFigure:WCDPower[:BTS]:CTABle[:STATe] <State>

This command switches the channel table on or off. When switched on, the measured channel table is stored under the name "RECENT" and is selected for use. After the "RECENT" channel table is switched on, another channel table can be selected with the command CONFigure:WCDPower[:BTS]:CTABle:SELect on page 185.

Parameters:

Return values:

<state></state>	ON OFF	
	*RST: OFF	
Example:	CONF:WCDP:CTAB ON	
Mode:	BTS application only	
Manual control:	See "Using Predefined Channel Tables" on page 89	

CONFigure:WCDPower[:BTS]:CTABle:CATalog?

This command reads out the names of all channel tables stored on the instrument. The first two result values are global values for all channel tables, the subsequent values are listed for each individual table.

Netuin values.	
<totalsize></totalsize>	Sum of file sizes of all channel table files (in bytes)
<freemem></freemem>	Available memory left on hard disk (in bytes)
<filename></filename>	File name of individual channel table file
<filesize></filesize>	File size of individual channel table file (in bytes)
Example:	CONF:WCDP:CTAB:CAT? Sample result (description see table below): 52853,2634403840,3GB_1_16.XML, 3469,3GB_1_32.XML,5853,3GB_1_64.XML, 10712,3GB_2.XML,1428,3GB_3_16.XML, 3430,3GB_3_32.XML,5868,3GB_4.XML, 678,3GB_5_2.XML,2554,3GB_5_4.XML, 4101,3GB_5_8.XML,7202,3GB_6.XML, 7209,MYTABLE.XML,349

Mode:	BTS application only
moue.	Dio application only

Manual control: See "Predefined Tables" on page 90

Table 10-5: Description of query results in example:

Value	Description
52853	Total size of all channel table files: 52583 bytes
2634403840	Free memory on hard disk: 2.6 Gbytes
3GB_1_16.XML	Channel table 1: 3GB_1_16.XML
3469	File size for channel table 1: 3469 bytes
3GB_1_32.XML	Channel table 2: 3GB_1_32.XML
5853	File size for channel table 2: 5853 bytes
3GB_1_64.XML	Channel table 3: 3GB_1_64.XML
10712	File size for channel table 3: 10712 bytes
	Channel table x:

CONFigure:WCDPower[:BTS]:CTABle:COPY <FileName>

This command copies one channel table onto another one. The channel table to be copied is selected with command CONFigure: WCDPower[:BTS]:CTABle:NAME on page 187.

The name of the channel table may contain a maximum of 8 characters.

Parameters: <filename></filename>	name of the new channel table
Example:	CONF:WCDP:CTAB:NAME 'NEW_TAB' Defines the channel table name to be copied. CONF:WCDP:CTAB:COPY 'CTAB_2' Copies channel table 'NEW_TAB' to 'CTAB_2'.
Usage:	Event
Mode:	BTS application only
Manual control:	See "Copying a Table" on page 90

CONFigure:WCDPower[:BTS]:CTABle:DELete

This command deletes the selected channel table. The channel table to be deleted is selected with the command CONFigure: WCDPower[:BTS]:CTABle:NAME on page 187.

Example:	CONF:WCDP:CTAB:NAME 'NEW_TAB' Defines the channel table name to be deleted. CONF:WCDP:CTAB:DEL Deletes the table.
Mode:	BTS application only
Manual control:	See "Deleting a Table" on page 90

CONFigure:WCDPower[:BTS]:CTABle:SELect <FileName>

This command selects a predefined channel table file for comparison during channel detection. Before using this command, the "RECENT" channel table must be switched on first with the command CONFigure:WCDPower[:BTS]:CTABle[:STATe] on page 183.

Parameters: <filename></filename>	*RST:	RECENT	
Example:	CONF:WCDP:CTAB ON Switches the channel table on. CONF:WCDP:CTAB:SEL 'CTAB_1' Selects the predefined channel table 'CTAB_1'.		
Mode:	BTS application only		
Manual control:	See "Select	ing a Table" on page 90	

CONFigure:WCDPower:MS:CTABle[:STATe] <State>

This command switches the channel table on or off. When switched on, the measured channel table is stored under the name "RECENT" and is selected for use. After the "RECENT" channel table is switched on, another channel table can be selected with the command CONFigure:WCDPower:MS:CTABle:SELect on page 186.

Parameters:

<state></state>	ON OFF		
	*RST:	OFF	
Example:	CONF:WCDP:CTAB ON		
Mode:	UE application only		
Manual control:	See "Using Predefined Channel Tables" on page 89		

CONFigure:WCDPower:MS:CTABle:CATalog?

This command reads out the names of all channel tables stored on the instrument. The first two result values are global values for all channel tables, the subsequent values are listed for each individual table.

Return values:

<totalsize></totalsize>	Sum of file sizes of all channel table files (in by	/tes)
-------------------------	---	-------

<freemem></freemem>	Available memory left on hard disk (in bytes)
<filename></filename>	File name of individual channel table file
<filesize></filesize>	File size of individual channel table file (in bytes)
Usage:	Query only
Mode:	UE application only
Manual control:	See "Predefined Tables" on page 90

CONFigure:WCDPower:MS:CTABle:COPY <FileName>

This command copies one channel table onto another one. The channel table to be copied is selected with command CONFigure:WCDPower:MS:CTABle:NAME on page 188.

The name of the channel table may contain a maximum of 8 characters.

Parameters: <filename></filename>	Name of the new channel table		
Example:	CONF:WCDP:MS:CTAB:NAME 'NEW_TAB' Defines the channel table name to be copied. CONF:WCDP:MS:CTAB:COPY 'CTAB_2' Copies channel table 'NEW_TAB' to 'CTAB_2'.		
Mode:	UE application only		
Manual control:	See "Copying a Table" on page 90		
Manual control:	See "Copying a Table" on page 90		

CONFigure:WCDPower:MS:CTABle:DELete

This command deletes the selected channel table. The channel table to be deleted is selected with the command CONFigure:WCDPower:MS:CTABle:NAME on page 188.

Example:	CONF:WCDP:MS:CTAB:NAME 'NEW_TAB' Defines the channel table name to be deleted. CONF:WCDP:MS:CTAB:DEL
Mode:	UE application only
Manual control:	See "Deleting a Table" on page 90

CONFigure:WCDPower:MS:CTABle:SELect <FileName>

This command selects a predefined channel table file for comparison during channel detection. Before using this command, the "RECENT" channel table must be switched on first with the command CONFigure:WCDPower:MS:CTABle[:STATe] on page 185.

Parameters:

<FileName> *RST: RECENT

Example:	CONF:WCDP:MS:CTAB1 ON Switches the channel table on. CONF:WCDP:CTAB:MS:SEL 'CTAB_1' Selects the predefined channel table 'CTAB_1'.
Mode:	UE application only
Manual control:	See "Selecting a Table" on page 90

10.3.7.3 Configuring Channel Tables

Some general settings and functions are available when configuring a predefined channel table.

Remote commands exclusive to configuring channel tables:

CONFigure:WCDPower[:BTS]:CTABle:NAME	187
CONFigure:WCDPower[:BTS]:CTABle:COMMent	187
CONFigure:WCDPower:MS:CTABle:NAME	188
CONFigure:WCDPower:MS:CTABle:COMMent	188
5	

CONFigure:WCDPower[:BTS]:CTABle:NAME <Name>

This command creates a new channel table file or selects an existing channel table in order to copy or delete it.

Parameters:

<name></name>	<file name=""></file>		
	*RST:	RECENT	
Example:	CONF:WCDP:CTAB:NAME 'NEW_TAB'		
Mode:	BTS application only		
Manual control:	See "Name" on page 91		

CONFigure:WCDPower[:BTS]:CTABle:COMMent <Comment>

This command defines a comment for the selected channel table:

Prior to this command, the name of the channel table has to be defined with command CONFigure:WCDPower[:BTS]:CTABLe:NAME on page 187. The values of the table are defined with command CONFigure:WCDPower[:BTS]:CTABLe:DATA on page 189.

Parameters: <Comment>

<Comment?

Example:	CONF:WCDP:CTAB:NAME 'NEW_TAB' Defines the channel table name. CONF:WCDP:CTAB:COMM 'Comment for table 1' Defines a comment for the table. CONF:WCDP:CTAB:DATA 8,0,0,0,0,0,1,0.00,8,1,0,0,0,0,1,0.00,7,1,0, 256,8,0,1,0.00 Defines the table values.
Mode:	BTS application only
Manual control:	See "Comment" on page 91

CONFigure:WCDPower:MS:CTABle:NAME <FileName>

This command creates a new channel table file or selects an existing channel table in order to copy or delete it.

Parameters:				
<filename></filename>	<file name=""></file>			
	*RST:	RECENT		
Example:	CONF:WCDE	CTAB:NAME	'NEW_TAB'	
Mode:	UE application only			
Manual control:	See "Name" on page 91			

CONFigure:WCDPower:MS:CTABle:COMMent <Comment>

This command defines a comment for the selected channel table:

Prior to this command, the name of the channel table has to be defined with command CONFigure:WCDPower:MS:CTABLe:NAME on page 188. The values of the table are defined with command CONFigure:WCDPower:MS:CTABLe:DATA on page 190.

Parameters:

<Comment>

Example:	CONF:WCDP:MS:CTAB:NAME 'NEW_TAB'			
	Defines the channel table name.			
	CONF:WCDP:MS:CTAB:COMM 'Comment for table 1'			
	Defines a comment for the table.			
Mode:	UE application only			
Manual control:	See "Comment" on page 91			

10.3.7.4 Configuring Channel Details (BTS Measurements)

The following commands are used to configure individual channels in a predefined channel table in BTS measurements.

CONFigure:WCDPower[:BTS]:CTABle:DATA <CodeClass>, <CodeNumber>, <UseTFCI>, <TimingOffset>, <PilotLength>, <ChannelType>, <Status>, <CDP>

This command defines or queries the values of the selected channel table. Each line of the table consists of 8 values.

Channels PICH, CPICH and PCCPCH may only be defined once. If channel CPICH or PCCPCH is missing in the command, it is automatically added at the end of the table.

Prior to this command, the name of the channel table has to be defined with the command CONFigure:WCDPower[:BTS]:CTABle:NAME on page 187.

Parameters: <codeclass></codeclass>	Range: 2 to 9
<codenumber></codenumber>	Range: 0 to 511
<usetfci></usetfci>	0 1 0 not used 1 used
<timingoffset></timingoffset>	Step width: 256; for code class 9: 512 Range: 0 to 38400
<pilotlength></pilotlength>	code class 9: 4 code class 8: 2,4, 8 code class 7: 4, 8 code class 5/6: 8 code class 2/3/4: 16
<channeltype></channeltype>	For the assignment of channel types to parameters see table 10-3.
<status></status>	0 not active 1 active
<cdp></cdp>	for queries: CDP relative to total signal power; for settings: CDP absolute or relative
Example:	CONF:WCDP:CTAB:NAME 'NEW_TAB' Defines the channel table name . CONF:WCDP:CTAB:DATA 8,0,0,0,0,0,1,0.00,8,1,0,0,0,0,1,0.00,7,1,0, 256,8,0,1,0.00
Mode:	BTS application only

Manual control:	See "Channel Type" on page 93
	See "Channel Number (Ch. SF)" on page 93
	See "Use TFCI" on page 93
	See "Timing Offset" on page 93
	See "Pilot Bits" on page 93
	See "CDP Relative" on page 94
	See "Status" on page 94

10.3.7.5 Configuring Channel Details (UE Measurements)

The following commands are used to configure individual channels in a predefined channel table in UE measurements.

CONFigure:WCDPower:MS:CTABle:DATA	190
CONFigure:WCDPower:MS:CTABle:DATA:HSDPcch	
CONFigure:WCDPower:MS:CTABle:EDATa	191
CONFigure:WCDPower:MS:CTABle:EDATa:EDPCc	192

CONFigure:WCDPower:MS:CTABle:DATA

<CodeClass>,<NoActChan>,<PilotLength>

This command defines the values of the selected channel table.

The Channel DPCCH may only be defined once. If channel DPCCH is missing in the command data, it is automatically added at the end of the table. Prior to this command, the name of the channel table has to be defined with the command CONFigure: WCDPower:MS:CTABLe:NAME on page 188.

Setting parameters:

<codeclass></codeclass>	Code class of channel 1. I-mapped Range: 2 to 9
<noactchan></noactchan>	Number of active channels Range: 1 to 7
<pilotlength></pilotlength>	pilot length of channel DPCCH
Return values: <codeclass></codeclass>	Code class of channel 1. I-mapped Range: 2 to 9
<noactchan></noactchan>	Number of active channels Range: 1 to 7
<pilotlength></pilotlength>	pilot length of channel DPCCH
<cdp1></cdp1>	Measured relative code domain power values of channel 1
<cdp2></cdp2>	Measured relative code domain power values of channel 2
<cdp3></cdp3>	Measured relative code domain power values of channel 3
<cdp4></cdp4>	Measured relative code domain power values of channel 4
<cdp5></cdp5>	Measured relative code domain power values of channel 5

<cdp6></cdp6>	Measured relative code domain power values of channel 6		
Example:	CONF:WCDP:MS:CTAB:DATA 8,0,0,5,1,0.00, 4,1,1,0,1,0.00, 4,1,0,0,1,0.00 The following channels are defined: DPCCH and two data chan- nels with 960 ksps.		
Mode:	UE application only		
Manual control:	See "Channel Type" on page 93 See "Channel Number (Ch. SF)" on page 93 See "Pilot Bits" on page 93 See "CDP Relative" on page 94 See "Status" on page 94		

CONFigure:WCDPower:MS:CTABle:DATA:HSDPcch <State>

This command activates or deactivates the HS-DPCCH entry in a predefined channel table.

Parameters: <state></state>	*RST:	ON
Example:	CONF:WCDF	:MS:CTAB:DATA:HSDP ON
Mode:	UE applicati	ion only

CONFigure:WCDPower:MS:CTABle:EDATa <CodeClass>, <NoActChan>

This command defines the values for an E-DPCCH channel in the selected channel table. The channel table must be selected using the command CONFigure:WCDPower:MS: CTABLe:NAME on page 188.

Setting parameters:

<codeclass></codeclass>	Code class of channel		
	Range:	2 to 9	
<noactchan></noactchan>	Number of a	active channels	
	Range:	0 to 4	
Return values:			
<codeclass></codeclass>	Code class	of channel	
	Range:	2 to 9	
<noactchan></noactchan>	Number of a	active channels	
	Range:	0 to 4	
<ecdp1></ecdp1>	Measured re	elative code domain power values of channel 1	
<ecdp2></ecdp2>	Measured re	elative code domain power values of channel 2	
<ecdp3></ecdp3>	Measured re	elative code domain power values of channel 3	
<ecdp4></ecdp4>	Measured re	elative code domain power values of channel 4	

Example: CONF:WCDP:MS:CTAB:EDAT 8,3

Mode: UE application only

CONFigure:WCDPower:MS:CTABle:EDATa:EDPCc <State>

This command activates or deactivates the E-DPCCH entry in a predefined channel table.

 Parameters:

 <State>
 *RST:
 OFF

 Example:
 CONF:WCDP:MS:CTAB:EDAT:EDPC ON

 Mode:
 UE application only

10.3.8 Sweep Settings

[SENSe:]AVERage <n>:COUNt</n>	92
[SENSe:]SWEep:COUNt19	92

[SENSe:]AVERage<n>:COUNt <AverageCount>

This command defines the number of sweeps that the R&S FSW uses to average traces.

In case of continuous sweeps, the R&S FSW calculates the moving average over the average count.

In case of single sweep measurements, the R&S FSW stops the measurement and calculates the average after the average count has been reached.

The average count is valid for all measurement traces in a particular measurement window.

Parameters:

<averagecount></averagecount>	If you set a average count of 0 or 1, the R&S FSW performs on single sweep in single sweep mode. In continuous sweep mode, if the average count is set to 0, a moving average over 10 sweeps is performed.		
	Range: 0 to 200000 *RST: 0		
Usage:	SCPI confirmed		
Manual control:	See "Sweep/Average Count" on page 97		

[SENSe:]SWEep:COUNt <SweepCount>

This command defines the number of sweeps the R&S FSW uses to average traces.

In case of continuous sweeps, the R&S FSW calculates the moving average over the average count.

In case of single sweep measurements, the R&S FSW stops the measurement and calculates the average after the average count has been reached.

Parameters: <sweepcount></sweepcount>	If you set a sweep count of 0 or 1, the R&S FSW performs one single sweep in single sweep mode. In continuous sweep mode, if the sweep count is set to 0, a moving average over 10 sweeps is performed.		
	Range: 0 to 200000 *RST: 0		
Example:	SWE:COUN 64 Sets the number of sweeps to 64. INIT:CONT OFF Switches to single sweep mode. INIT; *WAI Starts a sweep and waits for its end.		
Usage:	SCPI confirmed		
Manual control:	See "Sweep/Average Count" on page 97		

10.3.9 Automatic Settings

MSRA operating mode

In MSRA operating mode, the following commands are not available, as they require a new data acquisition. However, 3GPP FDD applications cannot perform data acquisition in MSRA operating mode.

Useful commands for adjusting settings automatically described elsewhere:

- DISPlay[:WINDow<n>]:TRACe:Y[:SCALe]:AUTO ONCE on page 164
- [SENSe:]CDPower:LCODe:SEARch[:IMMediate]? on page 147

Remote commands exclusive to adjusting settings automatically:

CONFigure:WCDPower[:BTS]:ASCale[:STATe]	193
CONFigure:WCDPower[:BTS]:MCARrier:STATe	
[SENSe:]ADJust:ALL	
[SENSe:]ADJust:CONFigure:DURation	
[SENSe:]ADJust:CONFigure:DURation:MODE	
[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer	
[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer	196
[SENSe:]ADJust:LEVel	

CONFigure:WCDPower[:BTS]:ASCale[:STATe] <State>

Activate this command if multiple carriers are used. In this case, the autoscaling function automatically changes the level settings if the center frequency is changed to another carrier.

Parameters:		
<state></state>	ON OFF	
	*RST:	ON
Example:	CONF:WCDE	ASC:STAT ON
Mode:	BTS applica	ation only

CONFigure:WCDPower[:BTS]:MCARrier:STATe <State>

Activate this command if multiple carriers are used. In this case, the adjust reference level procedure ensures that the settings of RF attenuation and reference level are optimally adjusted for measuring a multi-carrier signal.

(Ctata)	- · · ·		
<state></state>	ON OFF		
	*RST:	OFF	
Example:	CONF:WCDP	:MCAR:STAT	ON
Mode:	BTS applica	tion only	

[SENSe:]ADJust:ALL

This command initiates a measurement to determine and set the ideal settings for the current task automatically (only once for the current measurement).

This includes:

Developer

- Reference level
- Scrambling code
- Scaling

Example:	ADJ:ALL
----------	---------

Usage: Event

Manual control: See "Adjusting all Determinable Settings Automatically (Auto All)" on page 98

[SENSe:]ADJust:CONFigure:DURation < Duration>

In order to determine the ideal reference level, the R&S FSW performs a measurement on the current input data. This command defines the length of the measurement if [SENSe:]ADJust:CONFigure:DURation:MODE is set to MANual.

Parameters:

<Duration>

Numeric value in secondsRange:0.001 to 16000.0*RST:0.001Default unit: s

Example:	ADJ:CONF:DUR:MODE MAN Selects manual definition of the measurement length. ADJ:CONF:LEV:DUR 5ms Length of the measurement is 5 ms.
Manual control:	See "Changing the Automatic Measurement Time (Meastime Manual)" on page 99

[SENSe:]ADJust:CONFigure:DURation:MODE <Mode>

In order to determine the ideal reference level, the R&S FSW performs a measurement on the current input data. This command selects the way the R&S FSW determines the length of the measurement.

<mode></mode>	AUTO The R&S FSW determines the measurement length automatically according to the current input data. MANual The R&S FSW uses the measurement length defined by [SENSe:]ADJust:CONFigure:DURation on page 194. *RST: AUTO
Manual control:	See "Resetting the Automatic Measurement Time (Meastime Auto)" on page 99 See "Changing the Automatic Measurement Time (Meastime Manual)" on page 99

[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer <Threshold>

When the reference level is adjusted automatically using the [SENSe:]ADJust: LEVel on page 196 command, the internal attenuators and the preamplifier are also adjusted. In order to avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines a lower threshold the signal must fall below (compared to the last measurement) before the reference level is adapted automatically.

Parameters:

<threshold></threshold>	Range: *RST: Default unit:	0 dB to 200 dB +1 dB dB
Example:	For an input	CONF:HYST:LOW 2 signal level of currently 20 dBm, the reference level adjusted when the signal level falls below 18 dBm.
Manual control:	See "Lower	Level Hysteresis" on page 100

[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer <Threshold>

When the reference level is adjusted automatically using the [SENSe:]ADJust: LEVel on page 196 command, the internal attenuators and the preamplifier are also adjusted. In order to avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines an upper threshold the signal must exceed (compared to the last measurement) before the reference level is adapted automatically.

Parameters:

<threshold></threshold>	- 0-	0 dB to 200 dB +1 dB dB
Example:	SENS:ADJ:	CONF:HYST:UPP 2
Example:	•	signal level of currently 20 dBm, the reference level adjusted when the signal level rises above 22 dBm.
Manual control:	See "Upper I	Level Hysteresis" on page 99

[SENSe:]ADJust:LEVel

This command initiates a single (internal) measurement that evaluates and sets the ideal reference level for the current input data and measurement settings. This ensures that the settings of the RF attenuation and the reference level are optimally adjusted to the signal level without overloading the R&S FSW or limiting the dynamic range by an S/N ratio that is too small.

Example:	ADJ:LEV
Usage:	Event
Manual control:	See "Reference Level" on page 73 See "Setting the Reference Level Automatically (Auto Level)" on page 74

10.3.10 Evaluation Range

The evaluation range defines which data is evaluated in the result display.

[SENSe:]CDPower:CODE	196
[SENSe:]CDPower:FRAMe[:VALue]	
[SENSe:]CDPower:SLOT	197
[SENSe:]CDPower:MAPPing	
CALCulate <n>:CDPower:Mapping</n>	

[SENSe:]CDPower:CODE <CodeNumber>

This command sets the code number. The code number refers to code class 9 (spreading factor 512).

Parameters:	
<codenumber></codenumber>	

<codenumber></codenumber>	<numeric value=""></numeric>	
	*RST: 0	
Example:	SENS:CDP:CODE 30	
Manual control:	See "Channel" on page 107	

[SENSe:]CDPower:FRAMe[:VALue] <Frame>

This command defines the frame to be analyzed within the captured data.

Parameters:			
<frame/>	<numeric value=""></numeric>		
	Range: *RST:	[0 CAPTURE_LENGTH – 1] 1	
Example:	CDP:FRAM	1:VAL 1	
Manual control:	See "Fram	e To Analyze" on page 85	

[SENSe:]CDPower:SLOT <SlotNumber>

This command selects the (CPICH) slot number to be evaluated.

Parameters: <slotnumber></slotnumber>	<numeric value=""> *RST: 0</numeric>
Example:	SENS:CDP:SLOT 3
Manual control:	See "Slot" on page 107

[SENSe:]CDPower:MAPPing <SignalBranch>

This command switches between I and Q branches of the signal for all evaluations (if not specified otherwise using CALCulate<n>:CDPower:Mapping on page 197).

Parameters:

Mode:	UE applicat	ion only
Example:	CDP:MAPP	Q
<signalbranch></signalbranch>	I Q *RST:	Q

CALCulate<n>:CDPower:Mapping <SignalBranch>

This command adjusts the mapping for the evaluations Code Domain Power and Code Domain Error Power in a specific window.

Parameters: <signalbranch></signalbranch>	I Q AUTO I The I-branch of the signal will be used for evaluation Q The Q-branch of the signal will be used for evaluation AUTO The branch selected by the [SENSe:]CDPower:MAPPing com- mand will be used for evaluation. *RST: AUTO
Example:	CALC:CDP:MAPPING AUTO
Mode:	UE application only
Manual control:	See "Branch (UE measurements only)" on page 108 See "Selecting a Different Branch for a Window" on page 109

10.3.11 Code Domain Analysis Settings (BTS Measurements)

Some evaluations provide further settings for the results. The commands for BTS measurements are described here.

CALCulate:MARKer <m>:FUNCtion:ZOOM</m>	198
[SENSe:]CDPower:CPB	198
[SENSe:]CDPower:NORMalize	
[SENSe:]CDPower:PDISplay	199
[SENSe:]CDPower:PDIFf	199
[SENSe:]CDPower:PREFerence	

CALCulate:MARKer<m>:FUNCtion:ZOOM <State>

If marker zoom is activated, the number of channels displayed on the screen in the code domain power and code domain error power result diagram is reduced to 64.

The currently selected marker defines the center of the displayed range.

Parameters:

<state></state>	ON OFF		
	*RST:	OFF	
Example:	CALC:MARK	:FUNC:ZOOM (ЛС

[SENSe:]CDPower:CPB <Value>

This command selects the constellation parameter B. According to 3GPP specification, the mapping of 16QAM symbols to an assigned bit pattern depends on the constellation parameter B.

Parameters:

<value></value>	<numeric value=""></numeric>	
	*RST: 0	
Example:	SENS:CDP:CDP 1	
Manual control:	See "Constellation Parameter B" on page 111	

[SENSe:]CDPower:NORMalize <State>

This command switches elimination of I/Q offset on or off.

Parameters:		
<state></state>	ON OFF	
	*RST:	OFF
Example:		:NORM ON he elimination of the I/Q offset.
Manual control:	See "Comp	pensate IQ Offset" on page 110

[SENSe:]CDPower:PDISplay <Mode>

This command switches between showing the absolute or relative power.

This parameter only affects the Code Domain Power evaluation.

Parameters:

<mode></mode>	ABS REL
	ABSolute Absolute power levels
	RELative Power levels relative to total signal power or (BTS application only)CPICH channel power (see [SENSe:]CDPower:PREFerenceon page 200)*RST:ABS
Example:	SENS:CDP:PDIS ABS
Manual control:	See "Code Power Display" on page 110 See "Code Power Display" on page 112

[SENSe:]CDPower:PDIFf <State>

This command defines which slot power difference is displayed in the Power vs Slot evaluation.

Parameters:			
<state></state>	ON OFF		
	ON The slot power difference to the previous slot is displayed.		
	OFF		
	The current slot power of each slot is displayed.		
	*RST: OFF		
Example:	SENS:CDP:PDIF ON		
Mode:	BTS application only		
Manual control:	See "Show Difference to Previous Slot" on page 110		

[SENSe:]CDPower:PREFerence <Mode>

This command defines the reference for the relative CDP measurement values.

Parameters:

<mode></mode>	TOTal CPICh	
	TOTal Total signal power	
	CPICh CPICH channel power *RST: TOTal	
Example:	SENS:CDP:PREF CPIC	
Mode:	BTS application only	
Manual control:	See "Code Power Display" on page 110	

10.3.12 Code Domain Analysis Settings (UE Measurements)

Some evaluations provide further settings for the results. The commands for UE measurements are described here.

Useful commands for Code Domain Analysis described elsewhere:

- CALCulate:MARKer<m>:FUNCtion:ZOOM on page 198
- [SENSe:]CDPower:NORMalize on page 199
- [SENSe:]CDPower:PDISplay on page 199

Remote commands exclusive to Code Domain Analysis in UE Measurements:

SENSe:]CDPower:ETCHips)1
SENSe:]CDPower:HSLot)1

[SENSe:]CDPower:ETCHips <State>

This command selects length of the measurement interval for calculation of error vector magnitude (EVM). In accordance with 3GPP specification Release 5, the EVM measurement interval is one slot (4096 chips) minus 25 μ s (3904 chips) at each end of the burst if power changes are expected. If no power changes are expected, the evaluation length is one slot (4096 chips).

Parameters:

<state></state>	ON Changes of power are expected. Therefore an EVM measurement interval of one slot minus 25 μ s (3904 chips) is considered.	
	OFF Changes of power are not expected. Therefore an EVM measure- ment interval of one slot (4096 chips) is considered *RST: OFF	
Example:	SENS:CDP:ETCH ON	
Manual control:	See "Eliminate Tail Chips" on page 112	

[SENSe:]CDPower:HSLot <State>

This command switches between the analysis of half slots and full slots.

Parameters:	
<state></state>	ON OFF
	ON
	30 (half) slots are evaluated
	OFF
	15 (full) slots are evaluated
	*RST: OFF
Example:	SENS:CDP:HSL ON
Mode:	UE application only
Manual control:	See "Measurement Interval" on page 112

10.4 Configuring RF Measurements

RF measurements are performed in the Spectrum application, with some predefined settings as described in chapter 3.3, "RF Measurements", on page 32.

For details on configuring these RF measurements in a remote environment, see the Remote Commands chapter of the R&S FSW User Manual.

The 3GPP FDD RF measurements must be activated for a 3GPP FDD application, see chapter 10.1, "Activating 3GPP FDD Measurements", on page 140.

The individual measurements are activated using the CONFigure: WCDPower[: BTS]:MEASurement on page 143 command (see chapter 10.2, "Selecting a Measurement", on page 143).

•	Special RF Configuration Commands	202
•	Analysis	202

10.4.1 Special RF Configuration Commands

In addition to the common RF measurement configuration commands described for the base unit, the following special commands are available in 3GPP FDD applications:

CONFigure:WCDPower[:BTS]:STD <Type>

Switches between Normal mode and Home BS (Home Base Station) mode for ACP and SEM measurements in the BTS application. Switching this parameter changes the limits according to the specifications.

Parameters:

<type></type>	HOME NO	RMal
	HOME Home Base	Station
	NORMal Normal mod	le
	*RST:	NORMal
Example:	CONF:WCDF	BTS:STD HOME
Mode:	BTS application only	
Manual control:	See "BTS Standard" on page 102	

10.4.2 Analysis

General result analysis settings concerning the trace, markers, lines etc. are identical to the analysis functions in the Spectrum application except for some special marker functions and spectrograms, which are not available in 3GPP FDD applications.

For details see the "General Measurement Analysis and Display" chapter in the R&S FSW User Manual.

10.5 Configuring the Result Display

The following commands are required to configure the screen display in a remote environment. The tasks for manual operation are described in chapter 3, "Measurements and Result Display", on page 12.

10.5.1	General Window Commands	203
10.5.2	Working with Windows in the Display	204
10.5.3	Zooming into the Display	210
10.5.3.1	Using the Single Zoom	210
10.5.3.2	Using the Multiple Zoom	211

10.5.1 General Window Commands

The following commands are required to configure general window layout, independant of the application.

Note that the suffix <n> always refers to the window *in the currently selected measurement channel* (see INSTrument[:SELect] on page 142).

DISPlay:FORMat	203
DISPlay[:WINDow <n>]:SIZE</n>	
DISPlay[:WINDow <n>]:SELect</n>	

DISPlay:FORMat <Format>

This command determines which tab is displayed.

Parar	neters:
-------	---------

<format></format>	SPLit Displays the MultiView tab with an overview of all active channels
	SINGle
	Displays the measurement channel that was previously focused.
	*RST: SPL
Example:	DISP:FORM SING

DISPlay[:WINDow<n>]:SIZE <Size>

This command maximizes the size of the selected result display window *temporarily*. To change the size of several windows on the screen permanently, use the LAY: SPL command (see LAYout:SPLitter on page 207).

Parameters	:
------------	---

<size></size>	ze> LARGe Maximizes the selected window to full screen. Other windows are still active in the background. SMALI Reduces the size of the selected window to its original si If more than one measurement window was displayed or these are visible again.	
	*RST:	SMALI
Example:	DISP:WIND2:LARG	

User Manual 1173.9305.02 - 06

DISPlay[:WINDow<n>]:SELect

This command sets the focus on the selected result display window.

This window is then the active window.

Example:DISP:WIND1:SELSets the window 1 active.

Usage: Setting only

10.5.2 Working with Windows in the Display

The following commands are required to change the evaluation type and rearrange the screen layout for a measurement channel as you do using the SmartGrid in manual operation. Since the available evaluation types depend on the selected application, some parameters for the following commands also depend on the selected measurement channel.

Note that the suffix <n> always refers to the window *in the currently selected measurement channel* (see INSTrument[:SELect] on page 142).

LAYout:ADD[:WINDow]?	204
LAYout:CATalog[:WINDow]?	
LAYout:IDENtify[:WINDow]?	
LAYout:REMove[:WINDow]	
LAYout:REPLace[:WINDow]	207
LAYout:SPLitter	
LAYout:WINDow <n>:ADD?</n>	209
LAYout:WINDow <n>:IDENtify?</n>	209
LAYout:WINDow <n>:REMove</n>	
LAYout:WINDow <n>:REPLace</n>	210

LAYout:ADD[:WINDow]? <WindowName>,<Direction>,<WindowType>

This command adds a window to the display.

This command is always used as a query so that you immediately obtain the name of the new window as a result.

To replace an existing window, use the LAYout:REPLace[:WINDow] command.

Parameters:

<windowname></windowname>	String containing the name of the existing window the new window is inserted next to. By default, the name of a window is the same as its index. To determine the name and index of all active windows, use the LAYout:CATalog[:WINDow]? query.
<direction></direction>	LEFT RIGHt ABOVe BELow Direction the new window is added relative to the existing window.

<windowtype></windowtype>	text value
	Type of result display (evaluation method) you want to add.
	See the table below for available parameter values.
Return values:	
<newwindowname></newwindowname>	When adding a new window, the command returns its name (by
	default the same as its number) as a result.
Example:	LAY:ADD? '1', LEFT, MTAB
	Result:
	121
	Adds a new window named '2' with a marker table to the left of
	window 1.
Example:	LAY:ADD? '1',BEL,'XPOW:CDP:ABSolute'
	Adds a Code Domain Power display below window 1.
lleese.	
Usage:	Query only
Manual control:	See "Bitstream" on page 15
	See "Channel Table" on page 16
	See "Code Domain Power" on page 18
	See "Code Domain Error Power" on page 19
	See "Composite Constellation" on page 19
	See "Composite EVM" on page 20
	See "EVM vs Chip" on page 21
	See "Frequency Error vs Slot" on page 22
	See "Mag Error vs Chip" on page 22
	See "Marker Table" on page 23
	See "Peak Code Domain Error" on page 24
	See "Phase Discontinuity vs Slot" on page 24
	See "Phase Error vs Chip" on page 25
	See "Power vs Slot" on page 26
	See "Power vs Symbol" on page 27
	See "Result Summary" on page 27
	See "Symbol Constellation" on page 27
	See "Symbol EVM" on page 28
	See "Symbol Magnitude Error" on page 29
	See "Symbol Phase Error" on page 29
	See "Diagram" on page 37
	See "Result Summary" on page 38
	See "Marker Peak List" on page 38

Table 10-6: <WindowType> parameter values for 3GPP FDD application

Parameter value	Window type
BITStream	Bitstream
CCONst	Composite Constellation
CDPower	Code Domain Power
CDEPower	Code Domain Error Power
CEVM	Composite EVM

Parameter value	Window type
CTABle	Channel Table
EVMChip	EVM vs Chip
FESLot	Frequency Error vs Slot
MECHip	Magnitude Error vs Chip
MTABle	Marker table
PCDerror	Peak Code Domain Error
PDSLot	Phase Discontinuity vs Slot
PECHip	Phase Error vs Chip
PSLot	Power vs Slot
PSYMbol	Power vs Symbol
RSUMmary	Result Summary
SCONst	Symbol Constellation
SEVM	Symbol EVM
SMERror	Symbol Magnitude Error
SPERror	Symbol Phase Error

LAYout:CATalog[:WINDow]?

This command queries the name and index of all active windows from top left to bottom right. The result is a comma-separated list of values for each window, with the syntax:

<WindowName_1>,<Index_1>..<WindowName_n>,<Index_n>

Return values: <windowname></windowname>	string Name of the window. In the default state, the name of the window is its index.
<index></index>	numeric value Index of the window.
Example:	LAY: CAT? Result: '2',2,'1',1 Two windows are displayed, named '2' (at the top or left), and '1' (at the bottom or right).
Usage:	Query only

LAYout:IDENtify[:WINDow]? < WindowName>

This command queries the **index** of a particular display window.

Note: to query the **name** of a particular window, use the LAYout:WINDow<n>: IDENtify? query.

Query parameters:

<windowname></windowname>	String containing the name of a window.
Return values: <windowindex></windowindex>	Index number of the window.
Usage:	Query only

LAYout:REMove[:WINDow] <WindowName>

This command removes a window from the display.

Parameters:	String containing the name of the window.
<windowname></windowname>	In the default state, the name of the window is its index.
Usage:	Event

LAYout:REPLace[:WINDow] <WindowName>,<WindowType>

This command replaces the window type (for example from "Diagram" to "Result Summary") of an already existing window while keeping its position, index and window name.

To add a new window, use the LAYout:ADD[:WINDow]? command.

Parameters:

<windowname></windowname>	String containing the name of the existing window. By default, the name of a window is the same as its index. To determine the name and index of all active windows, use the LAYout:CATalog[:WINDow]? query.
<windowtype></windowtype>	Type of result display you want to use in the existing window. See LAYout: ADD[:WINDow]? on page 204 for a list of available window types.
Example:	LAY:REPL:WIND '1', MTAB Replaces the result display in window 1 with a marker table.

LAYout:SPLitter <Index1>,<Index2>,<Position>

This command changes the position of a splitter and thus controls the size of the windows on each side of the splitter.

As opposed to the DISPlay[:WINDow<n>]:SIZE on page 203 command, the LAYout:SPLitter changes the size of all windows to either side of the splitter permanently, it does not just maximize a single window temporarily.

Note that windows must have a certain minimum size. If the position you define conflicts with the minimum size of any of the affected windows, the command will not work, but does not return an error.



Fig. 10-1: SmartGrid coordinates for remote control of the splitters

Parameters: <index1></index1>	The index of one window the splitter controls.
<index2></index2>	The index of a window on the other side of the splitter.
<position></position>	New vertical or horizontal position of the splitter as a fraction of the screen area (without channel and status bar and softkey menu). The point of origin ($x = 0$, $y = 0$) is in the lower left corner of the screen. The end point ($x = 100$, $y = 100$) is in the upper right corner of the screen. (See figure 10-1.) The direction in which the splitter is moved depends on the screen layout. If the windows are positioned horizontally, the splitter also moves horizontally. If the windows are positioned vertically, the splitter also moves vertically. Range: 0 to 100
Example:	LAY: SPL 1, 3, 50 Moves the splitter between window 1 ('Frequency Sweep') and 3 ('Marker Table') to the center (50%) of the screen, i.e. in the figure above, to the left.
Example:	LAY: SPL 1, 4, 70 Moves the splitter between window 1 ('Frequency Sweep') and 3 ('Marker Peak List') towards the top (70%) of the screen. The following commands have the exact same effect, as any com- bination of windows above and below the splitter moves the splitter vertically. LAY: SPL 3, 2, 70 LAY: SPL 4, 1, 70 LAY: SPL 2, 1, 70

LAYout:WINDow<n>:ADD? <Direction>,<WindowType>

This command adds a measurement window to the display. Note that with this command, as opposed to LAYout:ADD[:WINDow]?, the suffix <n> determines the existing window next to which the new window is added.

To replace an existing window, use the LAYout:WINDow<n>:REPLace command.

This command is always used as a query so that you immediately obtain the name of the new window as a result.

Parameters:	LEFT RIGHt ABOVe BELow
<windowtype></windowtype>	Type of measurement window you want to add. See LAYout:ADD[:WINDow]? on page 204 for a list of available window types.
Return values: <newwindowname></newwindowname>	When adding a new window, the command returns its name (by default the same as its number) as a result.
Example:	LAY:WIND1:ADD? LEFT, MTAB Result: '2' Adds a new window named '2' with a marker table to the left of window 1.
Usage:	Query only

LAYout:WINDow<n>:IDENtify?

This command queries the **name** of a particular display window (indicated by the <n> suffix).

Note: to query the **index** of a particular window, use the LAYout:IDENtify[: WINDow]? command.

Return values:

<windowname></windowname>	String containing the name of a window. In the default state, the name of the window is its index.
Usage:	Query only

LAYout:WINDow<n>:REMove

This command removes the window specified by the suffix <n> from the display.

The result of this command is identical to the LAYout:REMove[:WINDow] command.

Usage: Event

LAYout:WINDow<n>:REPLace <WindowType>

This command changes the window type of an existing window (specified by the suffix <n>).

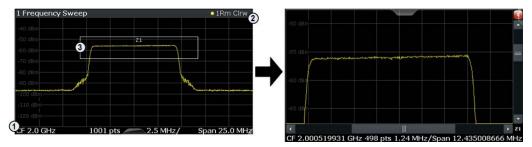
The result of this command is identical to the LAYout: REPLace [:WINDow] command.

To add a new window, use the LAYout:WINDow<n>:ADD? command.

Parameters:

<windowtype></windowtype>	Type of measurement window you want to replace another one with.
	See LAYout: ADD[:WINDow]? on page 204 for a list of available
	window types.

10.5.3 Zooming into the Display


10.5.3.1 Using the Single Zoom

DISPlay[:WINDow <n>]:ZOOM:AREA</n>	0
DISPlay[:WINDow <n>]:ZOOM:STATe</n>	1

DISPlay[:WINDow<n>]:ZOOM:AREA <x1>,<y1>,<x2>,<y2>

This command defines the zoom area.

To define a zoom area, you first have to turn the zoom on.

1 = origin of coordinate system (x1 = 0, y1 = 0)

2 = end point of system (x2 = 100, y2 = 100)

3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

Parameters:

<x1>,<y1>,Diagram coordinates in % of the complete diagram that define the<x2>,<y2>zoom area.

The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system.

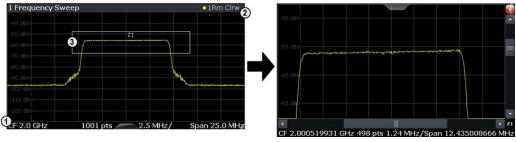
Range: 0 to 100 Default unit: PCT

Manual control: See "Single Zoom" on page 100

DISPlay[:WINDow<n>]:ZOOM:STATe <State>

This command turns the zoom on and off.

Parameters:	
<state></state>	ON OFF
	*RST: OFF
Example:	DISP:ZOOM ON
	Activates the zoom mode.
Manual control:	See "Single Zoom" on page 100
	See "Restore Original Display" on page 100
	See "Deactivating Zoom (Selection mode)" on page 101


10.5.3.2 Using the Multiple Zoom

DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:AREA</zoom></n>	211
DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:STATe</zoom></n>	212

DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:AREA <x1>,<y1>,<x2>,<y2>

This command defines the zoom area for a multiple zoom.

To define a zoom area, you first have to turn the zoom on.

1 = origin of coordinate system (x1 = 0, y1 = 0)

2 = end point of system (x2 = 100, y2= 100)

3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

Suffix:

<zoom:< th=""><th>></th></zoom:<>	>
--------------------------------------	---

1...4 Selects the zoom window.

Parameters:

<x1>,<y1>,Diagram coordinates in % of the complete diagram that define the<x2>,<y2>zoom area.

The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system.

Range: 0 to 100 Default unit: PCT

Manual control: See "Multiple Zoom" on page 100

Starting a Measurement

DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe <State>

This command turns the mulliple zoom on and off.

Suffix:	
<zoom></zoom>	14 Selects the zoom window.
	If you turn off one of the zoom windows, all subsequent zoom win-
	dows move up one position.
Parameters:	
<state></state>	ON OFF
	*RST: OFF
Manual control:	See "Multiple Zoom" on page 100 See "Restore Original Display" on page 100
	See "Deactivating Zoom (Selection mode)" on page 101

10.6 Starting a Measurement

The measurement is started immediately when a 3GPP FDD application is activated, however, you can stop and start a new measurement any time.

ABORt	212
INITiate:CONMeas	213
INITiate:CONTinuous	214
INITiate[:IMMediate]	214
INITiate:SEQuencer:ABORt	
INITiate:SEQuencer:IMMediate	
INITiate:SEQuencer:MODE	215
INITiate:SEQuencer:REFResh[:ALL]	
SYSTem:SEQuencer	

ABORt

This command aborts a current measurement and resets the trigger system.

To prevent overlapping execution of the subsequent command before the measurement has been aborted successfully, use the *OPC? or *WAI command after ABOR and before the next command.

For details see the "Remote Basics" chapter in the R&S FSW User Manual.

To abort a sequence of measurements by the Sequencer, use the INITiate: SEQuencer: ABORt on page 215 command.

Note on blocked remote control programs:

If a sequential command cannot be completed, for example because a triggered sweep never receives a trigger, the remote control program will never finish and the remote channel (GPIB, LAN or other interface) to the R&S FSW is blocked for further commands. In this case, you must interrupt processing on the remote channel first in order to abort the measurement.

To do so, send a "Device Clear" command from the control instrument to the R&S FSW on a parallel channel to clear all currently active remote channels. Depending on the used interface and protocol, send the following commands:

- Visa: viClear()
- **GPIB**: ibclr()
- **RSIB**: RSDLLibclr()

Now you can send the ABORt command on the remote channel performing the measurement.

Example:	ABOR; : INIT: IMM Aborts the current measurement and immediately starts a new one.
Example:	ABOR; *WAI INIT:IMM Aborts the current measurement and starts a new one once abor- tion has been completed.
Usage:	SCPI confirmed

INITiate:CONMeas

This command restarts a (single) measurement that has been stopped (using INIT:CONT OFF) or finished in single sweep mode.

The measurement is restarted at the beginning, not where the previous measurement was stopped.

As opposed to INITiate[:IMMediate], this command does not reset traces in maxhold, minhold or average mode. Therefore it can be used to continue measurements using maxhold or averaging functions.

 Example:
 (for Spectrum application:)

 INIT:CONT OFF

 Switches to single sweep mode.

 DISP:WIND:TRAC:MODE AVER

 Switches on trace averaging.

 SWE:COUN 20

 Setting the sweep counter to 20 sweeps.

 INIT; *WAI

 Starts the measurement and waits for the end of the 20 sweeps.

 INIT:CONM; *WAI

 Continues the measurement (next 20 sweeps) and waits for the end.

 Result: Averaging is performed over 40 sweeps.

Manual control: See "Continue Single Sweep" on page 97

INITiate:CONTinuous <State>

This command controls the sweep mode.

Note that in single sweep mode, you can synchronize to the end of the measurement with *OPC, *OPC? or *WAI. In continuous sweep mode, synchronization to the end of the measurement is not possible. Thus, it is not recommended that you use continuous sweep mode in remote control, as results like trace data or markers are only valid after a single sweep end synchronization.

For details on synchronization see the "Remote Basics" chapter in the R&S FSW User Manual.

If the sweep mode is changed for a measurement channel while the Sequencer is active (see INITiate:SEQuencer:IMMediate on page 215) the mode is only considered the next time the measurement in that channel is activated by the Sequencer.

Parameters:

<state></state>	ON OFF
	ON
	Continuous sweep
	OFF
	Single sweep
	*RST: ON
Example:	INIT:CONT OFF
	Switches the sweep mode to single sweep.
	INIT:CONT ON
	Switches the sweep mode to continuous sweep.
Manual control:	See "Continuous Sweep/RUN CONT" on page 96

INITiate[:IMMediate]

This command starts a (single) new measurement.

With sweep count or average count > 0, this means a restart of the corresponding number of measurements. With trace mode MAXHold, MINHold and AVERage, the previous results are reset on restarting the measurement.

You can synchronize to the end of the measurement with *OPC, *OPC? or *WAI.

For details on synchronization see the "Remote Basics" chapter in the R&S FSW User Manual.

Starting a Measurement

Example:	(For Spectrum application:) INIT: CONT OFF Switches to single sweep mode. DISP: WIND: TRAC: MODE AVER Switches on trace averaging. SWE: COUN 20 Sets the sweep counter to 20 sweeps. INIT; *WAI Starts the measurement and waits for the end of the 20 sweeps.
	Starts the measurement and waits for the end of the 20 sweeps.
Manual control:	See "Single Sweep/ RUN SINGLE" on page 96

INITiate:SEQuencer:ABORt

This command stops the currently active sequence of measurements. The Sequencer itself is not deactivated, so you can start a new sequence immediately using INITiate:SEQuencer:IMMediate on page 215.

To deactivate the Sequencer use SYSTem: SEQuencer on page 217.

Usage: Event

INITiate:SEQuencer:IMMediate

This command starts a new sequence of measurements by the Sequencer. Its effect is similar to the INITiate[:IMMediate] command used for a single measurement.

Before this command can be executed, the Sequencer must be activated (see SYSTem: SEQuencer on page 217).

Example:	SYST:SEQ ON
	Activates the Sequencer.
	INIT:SEQ:MODE SING
	Sets single Sequencer mode so each active measurement will be
	performed once.
	INIT:SEQ:IMM
	Starts the sequential measurements.
Usage:	Event

INITiate:SEQuencer:MODE <Mode>

This command selects the way the R&S FSW application performs measurements sequentially.

Before this command can be executed, the Sequencer must be activated (see SYSTem: SEQuencer on page 217).

A detailed programming example is provided in the "Operating Modes" chapter in the R&S FSW User Manual.

Note: In order to synchronize to the end of a sequential measurement using *OPC, *OPC? or *WAI you must use SINGle Sequencer mode.

For details on synchronization see the "Remote Basics" chapter in the R&S FSW User Manual.

Parameters:

<Mode>

SINGle

Each measurement is performed once (regardless of the channel's sweep mode), considering each channels' sweep count, until all measurements in all active channels have been performed.

CONTinuous

The measurements in each active channel are performed one after the other, repeatedly (regardless of the channel's sweep mode), in the same order, until the Sequencer is stopped.

CDEFined

First, a single sequence is performed. Then, only those channels in continuous sweep mode (INIT:CONT ON) are repeated.

*RST: CONTinuous

Example: SYST: SEQ ON Activates the Sequencer. INIT: SEQ: MODE SING Sets single Sequencer mode so each active measurement will be performed once. INIT: SEQ: IMM Starts the sequential measurements.

INITiate:SEQuencer:REFResh[:ALL]

This function is only available if the Sequencer is deactivated (SYSTem: SEQuencer SYST:SEQ:OFF) and only in MSRA mode.

The data in the capture buffer is re-evaluated by all active MSRA applications.

Example:	SYST:SEQ:OFF
-	Deactivates the scheduler
	INIT:CONT OFF
	Switches to single sweep mode.
	INIT; *WAI
	Starts a new data measurement and waits for the end of the
	sweep.
	INIT:SEQ:REFR
	Refreshes the display for all MSRA channels.

Usage:

Event

SYSTem:SEQuencer <State>

This command turns the Sequencer on and off. The Sequencer must be active before any other Sequencer commands (INIT:SEQ...) are executed, otherwise an error will occur.

A detailed programming example is provided in the "Operating Modes" chapter in the R&S FSW User Manual.

Parameters:

<state></state>	ON OFF
	ON The Sequencer is activated and a sequential measurement is started immediately.
	OFF The Sequencer is deactivated. Any running sequential measurements are stopped. Further Sequencer commands (INIT:SEQ) are not available.
Example:	*RST: OFF SYST:SEQ ON Activates the Sequencer.
	INIT:SEQ:MODE SING Sets single Sequencer mode so each active measurement will be performed once. INIT:SEQ:IMM Starts the sequential measurements. SYST:SEQ OFF

10.7 Retrieving Results

The following commands are required to retrieve the results from a 3GPP FDD measurement in a remote environment.

When the channel type is required as a parameter by a remote command or provided as a result for a remote query, abbreviations or assignments to a numeric value are used as described in chapter 10.3.7, "Channel Detection", on page 180.

Specific commands:

•	Retrieving Calculated Measurement Results	218
	Measurement Results for TRACe <n>[:DATA]? TRACE<n></n></n>	
	Retrieving Trace Results	
	Exporting Trace Results	
	Retrieving RF Results	

10.7.1 Retrieving Calculated Measurement Results

The following commands describe how to retrieve the calculated results from the CDA and Time Alignment Error measurements.

CALCulate <n>:MARKer<m>:FUNCtion:TAERror:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:WCDPower[:BTS]:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:WCDPower:MS:RESult?</m></n>	

CALCulate<n>:MARKer<m>:FUNCtion:TAERror:RESult? <ResultType>

This command queries the result of a time alignment measurement (see chapter 3.2, "Time Alignment Error Measurements", on page 30).

Query parameters:

<resulttype></resulttype>	TAERror Returns the time offset between the two antenna signals in chips.	
Example:	CALC:MARK:FUNC:TAER:RES? TAER	
Usage:	Query only	
Mode:	BTS application only	
Manual control:	See "Result List" on page 31	

CALCulate<n>:MARKer<m>:FUNCtion:WCDPower[:BTS]:RESult? <Measurement>

This command queries the measured and calculated results of the 3GPP FDD BTS code domain power measurement.

Query parameters:

<Measurement> The parameter specifies the required evaluation method.

ACHannels

Number of active channels

ARCDerror

relative code domain error averaged over all channels with modulation type 64QAM

CDPabsolute

code domain power absolute

CDPRelative

code domain power relative

CERRor

chip rate error

CHANnel

channel number

CSLot

channel slot number

EVMPeak

error vector magnitude peak

EVMRms

error vector magnitude RMS

FERRor

frequency error in Hz

IOFFset

imaginary part of the I/Q offset

IQIMbalance

I/Q imbalance

IQOFfset I/Q offset

MACCuracy

composite EVM

MPIC

average power of inactive channels

MTYPe

- modulation type:
- 2 QPSK
- 4 16 QAM
- 5 64 QAM
- 15 NONE

PCDerror

peak code domain error

PSYMbol

number of pilot bits

PTOTal

	total power
	QOFFset
	real part of the I/Q offset
	RCDerror
	relative code domain error
	RHO
	rho value for every slot
	SRATe
	symbol rate
	TFRame
	trigger to frame
	TOFFset
	timing offset
Example:	CALC:MARK:FUNC:WCDP:RES? PTOT
Usage:	Query only
Mode:	BTS application only
Manual control:	See "Code Domain Power" on page 18

CALCulate<n>:MARKer<m>:FUNCtion:WCDPower:MS:RESult? <Measurement>

This command queries the measured and calculated results of the 3GPP FDD UE code domain power measurement.

Query parameters:

<Measurement> The parameter specifies the required evaluation method.

ACHannels

Number of active channels

CDPabsolute

code domain power absolute

CDPRelative

code domain power relative

CERRor

chip rate error

CHANnel

channel number

CMAPping Channel branch

CSLot

channel slot number

EVMPeak

error vector magnitude peak

EVMRms

error vector magnitude RMS

FERRor

frequency error in Hz

IQIMbalance

I/Q imbalance

IQOFfset

I/Q offset

MACCuracy

composite EVM

MPIC

average power of the inactive codes for the selected slot

MTYPe

modulation type: BPSK-I: 0 BPSK-Q: 1 4PAM-I: 6 4PAM-Q: 7 NONE: 15

PCDerror

peak code domain error

PSYMbol

Number of pilot bits

PTOTal

total power

RHO

	rho value for every slot	
	SRATe symbol rate	
	TFRame trigger to frame TOFFset timing offset	
Example:	CALC:MARK:FUNC:WCDP:MS:RES? PTOT	
Usage:	Query only	
Mode:	UE application only	
Manual control:	See "Code Domain Power" on page 18	

10.7.2 Measurement Results for TRACe<n>[:DATA]? TRACE<n>

The evaluation method selected by the LAY: ADD: WIND command also affects the results of the trace data query (TRACe<n>[:DATA]? TRACE<n>, see TRACe<n>[:DATA]? on page 229).

Details on the returned trace data depending on the evaluation method are provided here.

For details on the graphical results of these evaluation methods, see chapter 3, "Measurements and Result Display", on page 12.

•	Code Domain Power	222
•	Channel Table	223
•	Code Domain Error Power	223
•	Power vs Slot	224
•	Result Summary	224
•	Composite EVM (RMS)	224
•	Peak Code Domain Error	225
•	Composite Constellation	225
•	Power vs Symbol	225
•	Symbol Constellation	225
•	Symbol EVM	226
•	Bitstream	226
•	Frequency Error vs Slot	227
•	Phase Discontinuity vs Slot	227
•	EVM vs Chip	227
•	Mag Error vs Chip	
•	Phase Error vs Chip	228
•	Symbol Magnitude Error	228
•	Symbol Phase Error.	
2		0

10.7.2.1 Code Domain Power

When the trace data for this evaluation is queried, 5 values are transmitted for each channel:

- the code class
- the channel number
- the absolute level
- the relative level
- the timing offset

For details on these parameters see TRACe<n>[:DATA]? on page 229.

10.7.2.2 Channel Table

When the trace data for this evaluation is queried, 5 values are transmitted for each channel:

- the class
- the channel number
- the absolute level
- the relative level
- the timing offset

For details on these parameters see TRACe<n>[:DATA]? on page 229.

Example:

The following example shows the results of a query for three channels with the following configuration:

Channel	Spreading factor	Channel number	Timing offset
1st	512	7	0
2nd	4	1	256 chips
3rd	128	255	2560 chips

This yields the following result:

9, 7, -40, -20, 0, 2, 1, -40, -20, 256, 7, 255, -40, -20, 2560

The channel order is the same as in the CDP diagram, i.e. it depends on their position in the code domain of spreading factor 512.

10.7.2.3 Code Domain Error Power

When the trace data for this evaluation is queried, 4 values are transmitted for each channel with code class 9:

code class	Highest code class of a downlink signal, always set to 9 (CC9)
code number	Code number of the evaluated CC9 channel [0511]

CDEP	Code domain error power value of the CC9 channel in [dB]
channel flag	Indicates whether the CC9 channel belongs to an assigned code channel: 0b00-0d0: CC9 is inactive. 0b01-0d1: CC9 channel belongs to an active code channel. 0b11-0d3: CC9 channel belongs to an active code channel; sent pilot symbols are incorrect

The channels are sorted by code number.

10.7.2.4 Power vs Slot

When the trace data for this evaluation is queried, 16 pairs of slots (slot number of CPICH) and level values are transferred:

<slot number>, <level value in dB> (for 16 slots)

10.7.2.5 Result Summary

When the trace data for this evaluation is queried, the results of the result summary are output in the following order:

<composite EVM [%]>,

<peak CDE [dB]>,

<carr freq error [Hz]>,

<chip rate error [ppm]>,

<total power [dB]>,

<trg to frame [µs]>,

<EVM peak channel [%]>,

<EVM mean channel [%]>,

<code class>,

<channel number>,

<power abs. channel [dB]>,

<power rel. channel [dB], referenced to CPICH or total power>,

<timing offset [chips]>,

<I/Q offset [%]>,

<I/Q imbalance [%]>

10.7.2.6 Composite EVM (RMS)

When the trace data for this evaluation is queried, 15 pairs of slots (slot number of CPICH) and level values are transferred:

<slot number>, <level value in %> (for 15 slots)

10.7.2.7 Peak Code Domain Error

When the trace data for this evaluation is queried, 15 pairs of slots (slot number of CPICH) and level values are transferred:

<slot number>, <level value in dB> (for 15 slots)

10.7.2.8 Composite Constellation

When the trace data for this evaluation is queried, the real and the imaginary branches of the chip constellation at the selected slot are transferred:

<Re1>, <Im1>, <Re2>, <Im2>, ..., <Re2560>, <Im2560>

The values are normalized to the square root of the average power at the selected slot.

10.7.2.9 Power vs Symbol

When the trace data for this evaluation is queried, the power of each symbol at the selected slot is transferred. The values indicate the difference to the reference power in dB. The number of the symbols depends on the spreading factor of the selected channel:

NOFSymbols=10*2(8-CodeClass)

10.7.2.10 Symbol Constellation

When the trace data for this evaluation is queried, the real and the imaginary branches are transferred:

<Re₀>, <Im₀>, <Re₁>, <Im₁>, ..., <Re_n>, <Im_n>

The number of level values depends on the spreading factor:

Spreading factor	Number of level values
512	5
256	10
128	20
64	40
32	80
16	160
8	320
4	640

10.7.2.11 Symbol EVM

When the trace data for this evaluation is queried, the real and the imaginary branches are transferred:

<Re₀>, <Im₀>, <Re₁>, <Im₁>, ..., <Re_n>, <Im_n>

The number of level values depends on the spreading factor:

Spreading factor	Number of level values
512	5
256	10
128	20
64	40
32	80
16	160
8	320
4	640

10.7.2.12 Bitstream

When the trace data for this evaluation is queried, the bit stream of one slot is transferred. Each symbol contains two consecutive bits in the case of a QPSK modulated slot and 4 consecutive bits in the case of a 16QAM modulated slot. One value is transferred per bit (range 0, 1). The number of symbols is not constant and may vary for each sweep. Individual symbols in the bit stream may be invalid depending on the channel type and the bit rate (symbols without power). The assigned invalid bits are marked by one of the digits "6", "7" or "9".

The values and number of the bits are as follows (without HS-DPCCH channels, see [SENSe:]CDPower:HSDPamode on page 146):

Unit	0
Value range	{0, 1, 6, 9}
	0 - Low state of a transmitted bit
	1 - High state of a transmitted bit
	6 - Bit of a symbol of a suppressed slot of a DPCH in Compressed Mode (DPCH-CPRSD)
	9 - Bit of a suppressed symbol of a DPCH (e.g. TFCI off)
Bits per slot	N _{BitPerSymb} = 2
Number of symbols	$N_{Symb} = 10*2^{(8-Code Class)}$
Number of bits	N _{Bit} = N _{Symb} * N _{BitPerSymb}
Format	Bit ₀₀ , Bit ₀₁ , Bit ₁₀ , Bit ₁₁ , Bit ₂₀ , Bit ₂₁ , , Bit _{NSymb 0} , Bit _{NSymb 1}

Table 10-7: Bit values and numbers without HS-DPCCH channels

The values and number of the bits including HS-DPCCH channels (see [SENSe:]CDPower:HSDPamode on page 146) are as follows:

Unit	0
Value range	{0, 1, 6, 7, 8, 9}
	0 - Low state of a transmitted bit
	1 - High state of a transmitted bit
	6 - Bit of a symbol of a suppressed slot of a DPCH in Compressed Mode (DPCH-CPRSD)
	7 - Bit of a switched-off symbol of an HS-PDSCH channel
	8 - Fill value for unused bits of a lower order modulation symbol in a frame containing higher order modulation
	9 - Bit of a suppressed symbol of a DPCH (e.g. TFCI off)
Bits per symbol	N _{BitPerSymb} = {2, 4, 6}
Symbols per slot	N _{Symb_Slot} = 10*2 ^(8-Code Class)
Symbols per frame	N _{Symb_Frame} = 15*N _{Symb_Slot} = 150*2 ^(8-Code Class)
Number of bits	N _{Bit} = N _{Symb_Frame} * N _{BitPerSymb_MAX}
Format (16QAM)	$Bit_{00}, Bit_{01}, Bit_{02}, Bit_{03}, Bit_{10}, Bit_{11}, Bit_{12}, Bit_{13}, \dots, ,$
	Bit _{NSymb_Frame 0} ,Bit _{NSymb_Frame 1} ,Bit _{NSymb_Frame 2} ,
	Bit _{NSymb_Frame 3}
Format (64QAM)	Bit ₀₀ , Bit ₀₁ , Bit ₀₂ , Bit ₀₃ , Bit ₀₄ , Bit ₀₅ , Bit ₁₀ , Bit ₁₁ , Bit ₁₂ , Bit ₁₃ , Bit ₁₄ , Bit ₁₅ ,,
	Bit _{NSymb_Frame 0} ,Bit _{NSymb_Frame 1} ,Bit _{NSymb_Frame 2} ,Bit _{NSymb_Frame 3} ,Bit _{NSymb_Frame 4} ,Bit _{NSymb_Frame 5}

Table 10-8: Bit values and numbers including HS-DPCCH channels

10.7.2.13 Frequency Error vs Slot

When the trace data for this evaluation is queried, 15 pairs of slot (slot number of CPICH) and values are transferred:

<slot number>, <value in Hz>

10.7.2.14 Phase Discontinuity vs Slot

When the trace data for this evaluation is queried, 15 pairs of slot (slot number of CPICH) and values are transferred:

<slot number>, <value in deg>

10.7.2.15 EVM vs Chip

When the trace data for this evaluation is queried, a list of vector error values of all chips at the selected slot is returned (=2560 values). The values are calculated as the square

root of the square difference between the received signal and the reference signal for each chip, normalized to the square root of the average power at the selected slot.

10.7.2.16 Mag Error vs Chip

When the trace data for this evaluation is queried, a list of magnitude error values of all chips at the selected slot is returned (=2560 values). The values are calculated as the magnitude difference between the received signal and the reference signal for each chip in %, and are normalized to the square root of the average power at the selected slot.

10.7.2.17 Phase Error vs Chip

When the trace data for this evaluation is queried, a list of phase error values of all chips in the selected slot is returned (=2560 values). The values are calculated as the phase difference between the received signal and the reference signal for each chip in degrees, and are normalized to the square root of the average power at the selected slot.

10.7.2.18 Symbol Magnitude Error

When the trace data for this evaluation is queried, the magnitude error in % of each symbol at the selected slot is transferred. The number of the symbols depends on the spreading factor of the selected channel:

NOFSymbols=10*2(8-CodeClass)

10.7.2.19 Symbol Phase Error

When the trace data for this evaluation is queried, the phase error in degrees of each symbol at the selected slot is transferred. The number of the symbols depends on the spreading factor of the selected channel:

NOFSymbols=10*2(8-CodeClass)

10.7.3 Retrieving Trace Results

The following commands describe how to retrieve the trace data from the CDA and Time Alignment Error measurements. Note that for these measurements, only 1 trace per window can be configured.

- FORMat[:DATA]
- TRACe<n>[:DATA]? on page 229
- TRACe<n>[:DATA]? TRACE1
- TRACe<n>[:DATA]? on page 230
- TRACe<n>[:DATA]? on page 231
- TRACe<n>[:DATA]? on page 232
- TRACe<n>[:DATA]? on page 233

- TRACe<n>[:DATA]? on page 234
- TRACe<n>[:DATA]? on page 234
- TRACe<n>[:DATA]? on page 235
- TRACe<n>[:DATA]? on page 236

FORMat[:DATA] <Format>

This command selects the data format that is used for transmission of trace data from the R&S FSW to the controlling computer.

Note that the command has no effect for data that you send to the R&S FSW. The R&S FSW automatically recognizes the data it receives, regardless of the format.

Parameters:

<format></format>	ASCii ASCii format, separated by commas. This format is almost always suitable, regardless of the actual data format. However, the data is not as compact as other formats may be.
	REAL,32 32-bit IEEE 754 floating-point numbers in the "definite length block format". In the Spectrum application, the format setting REAL is used for the binary transmission of trace data. *RST: ASCII
Example:	FORM REAL, 32
Usage:	SCPI confirmed

TRACe<n>[:DATA]? <MeasMode>

This command queries the trace data from the measurement. Depending on the selected measurement mode, the results vary. For a detailed description of the results, see the individual commands.

Query parameters: <measmode></measmode>	ATRACE1 ABITstream1 CTABLe CEVM CWCDp FINAL1 LIST PWCDp TPVSlot TRACE1 The data type defines which type of trace data is read.
Example:	TRAC:DATA? ATRACE
Usage:	Query only

TRACe<n>[:DATA]? TRACE1

This command returns the trace data. Depending on the evaluation, the trace data format varies.

The channels are output in a comma-separated list in ascending order sorted by code number, i.e. in the same sequence they are displayed on screen.

For details see chapter 10.7.2, "Measurement Results for TRACe <n>[:DATA]?</n>	
TRACE <n>", on page 222.</n>	

Return values: <codeclass></codeclass>	2 9 Code class of the channel
<channelno></channelno>	0 511 Code number of the channel
<abslevel></abslevel>	dBm Absolute level of the code channel at the selected channel slot.
<rellevel></rellevel>	% Relative level of the code channel at the selected channel slot ref- erenced to CPICH or total power.
<timingoffset></timingoffset>	0 38400 [chips] Timing offset of the code channel to the CPICH frame start. The value is measured in chips. The step width is 256 chips in the case of code class 2 to 8, and 512 chips in the case of code class 9.
Example:	TRAC2:DATA? TRACE1 Returns the trace data from trace 1 in window 2.
Usage:	Query only
Manual control:	See "Code Domain Error Power" on page 19 See "Composite Constellation" on page 19 See "Composite EVM" on page 20 See "EVM vs Chip" on page 21 See "Mag Error vs Chip" on page 22 See "Peak Code Domain Error" on page 24 See "Phase Discontinuity vs Slot" on page 24 See "Phase Error vs Chip" on page 25 See "Power vs Symbol" on page 27 See "Result Summary" on page 27 See "Symbol Constellation" on page 27 See "Symbol EVM" on page 28 See "Symbol Magnitude Error" on page 29 See "Symbol Phase Error" on page 29

TRACe<n>[:DATA]? ABITstream

This command returns the bit streams of all 15 slots one after the other. The output format may be REAL, UINT or ASCII. The number of bits of a 16QAM-modulated channel is twice that of a QPSK-modulated channel, the number of bits of a 64QAM-modulated channel is three times that of a QPSK-modulated channel.

This query is only available if the evaluation for the corresponding window is set to "Bitstream" using the LAY:ADD:WIND "XTIM:CDP:BSTReam" command (see LAYout:ADD[:WINDow]? on page 204).

The output format is identical to that of the TRAC: DATA? TRAC command for an activated Bitstream evaluation (see chapter 10.7.2, "Measurement Results for

TRACe<n>[:DATA]? TRACE<n>", on page 222). The only difference is the number of symbols which are evaluated. The ABITstream parameter evaluates all symbols of one entire frame (vs. only one slot for TRAC: DATA? TRAC).

The values 7 and 8 are only used in case of a varying modulation type of an HS-PDSCH channel. In this case the number of bits per symbol (NBitPerSymb) varies, as well. However, the length of the transmitted bit vector (NBit) depends only on the maximum number of bits per symbol in that frame. Thus, if the modulation type changes throughout the frame this will not influence the number of bits being transmitted (see examples below).

Example:	LAY:REPL 2, "XTIM:CDP:BSTReam" Sets the evaluation for window 2 to bit stream. TRAC2:DATA? ABITstream Returns the bit streams of all 15 slots in window 2, one after the other.
Usage:	Query only
Manual control:	See "Bitstream" on page 15

Examples for bits 7 and 8 for changing modulation types

Example 1:

Some slots of the frame are 64QAM modulated, other are 16QAM and QPSK modulated and some are switched OFF (NONE). If one or more slots of the frame are 64QAM modulated, six bits per symbol are transmitted and if the highest modulation order is 16QAM, four bits per symbol are transmitted. In any slot of the frame with lower order modulation, the first two or four of the four or six bits are marked by the number 8 and the last bits represent the transmitted symbol. If no power is transmitted in a slot, four or six entries per symbol of value 7 are transmitted.

Example 2:

Some slots of the frame are QPSK modulated and some are switched OFF. If one or more slots of the frame are QPSK modulated and no slot is 16QAM modulated, 2 bits per symbol are transmitted. If no power is transmitted in a slot, 2 entries per symbol of value 7 are transmitted.

Example 3:

Some slots of a DPCH are suppressed because of compressed mode transmission. The bits of the suppressed slots are marked by the digit '6'. In this case, always 2 bits per symbol are transmitted.

TRACe<n>[:DATA]? ATRACE1

This command returns a list of absolute Frequency Error vs Slot values for all 16 slots (based on CPICH slots). In contrast to the TRACE1 parameter return value, absolute values are returned.

Return values: <slotnumber></slotnumber>	Slot number
<freqerror></freqerror>	Absolute frequency error Default unit: Hz
Example:	TRAC2:DATA? ATRACE Returns a list of absolute frequency errors for all slots in window 2.
Usage:	Query only
Mode:	BTS application only
Manual control:	See "Frequency Error vs Slot" on page 22

TRACe<n>[:DATA]? CTABLe

This command returns the pilot length and the channel state (active, inactive) in addition to the values returned for TRACE < t >.

This command is only available for Code Domain Power or Channel Table evaluations (see chapter 3.1.2, "Evaluation Methods for Code Domain Analysis", on page 15).

Return values:

<codeclass></codeclass>	2 9 Code class of the channel
<channelno></channelno>	0 511 Code number of the channel
<abslevel></abslevel>	dBm Absolute level of the code channel at the selected channel slot.
<rellevel></rellevel>	% Relative level of the code channel at the selected channel slot ref- erenced to CPICH or total power.
<timingoffset></timingoffset>	0 38400 [chips] Timing offset of the code channel to the CPICH frame start. The value is measured in chips. The step width is 256 chips in the case of code class 2 to 8, and 512 chips in the case of code class 9.
<pilotlength></pilotlength>	The length of the pilot symbols. According to the 3GPP standard, the pilot length range depends on the code class. Range: 0,2,4,8,16 Default unit: symbols
<activeflag></activeflag>	0 1 Flag to indicate whether a channel is active (1) or not (0)
Example:	TRAC: DATA? CTABLE Returns a list of channel information, including the pilot length and channel state.
Usage:	Query only

Manual control:See "Channel Table" on page 16See "Code Domain Power" on page 18

TRACe<n>[:DATA]? CWCDp

This command returns additional results to the values returned for TRACE<t>.

The result is a comma-separated list with 10 values for each channel; the channels are output in ascending order sorted by code number, i.e. in the same sequence they are displayed on screen.

This command is only available for Code Domain Power or Channel Table evaluations (see chapter 3.1.2, "Evaluation Methods for Code Domain Analysis", on page 15).

Return values: <codeclass></codeclass>	2 9 Code class of the channel
<channelno></channelno>	0 511 Code number of the channel
<abslevel></abslevel>	dBm Absolute level of the code channel at the selected channel slot.
<rellevel></rellevel>	% Relative level of the code channel at the selected channel slot ref- erenced to CPICH or total power.
<timingoffset></timingoffset>	0 38400 [chips] Timing offset of the code channel to the CPICH frame start. The value is measured in chips. The step width is 256 chips in the case of code class 2 to 8, and 512 chips in the case of code class 9.
<pilotlength></pilotlength>	The length of the pilot symbols. According to the 3GPP standard, the pilot length range depends on the code class.Range:0,2,4,8,16Default unit: symbols
<activeflag></activeflag>	0 1 Flag to indicate whether a channel is active (1) or not (0)
<channeltype></channeltype>	Channel type. For details see table 10-3. Range: 0 16

<modtype></modtype>	Modulation type of the code channel at the selected channel slot 2 QPSK 4 16 QAM 15 NONE There is no power in the selected channel slot (slot is switched OFF). Range: 2,4,15
<reserved></reserved>	for future use
Example:	TRAC: DATA? CWCDp Returns a list of channel information for each channel in ascending order.
Usage:	Query only
Manual control:	See "Channel Table" on page 16 See "Code Domain Power" on page 18

TRACe<n>[:DATA]? FINAL1

This command returns the peak list. For each peak the following results are given:

frequency
level
between current peak level and next higher peak level
2:DATA? FINAL1 ns a list of peak values.
/ only
application only

TRACe<n>[:DATA]? LIST

This command returns the peak list of the spectrum emission mask measurement list evaluation.

An array of values is returned for each range of the limit line:

<array of range 1>, <array of range 2>,, <array of range n>,

where each array consists of the following values:

<No>, <Start>, <Stop>, <RBW>, <Freq>, <Levelabs>, <Levelrel>, <Delta>, <Limitcheck>, <Unused1>, <Unused2>

Parameters:		
<no></no>	Number of the limit line range	
<start></start>	Start frequency of the limit line range	
	Default unit: Hz	
<stop></stop>	Stop frequency of the limit line range	
	Default unit: Hz	
<rbw></rbw>	Resolution bandwidth of the limit line range	
	Default unit: Hz	
<freq></freq>	Frequency of the peak power within the range	
	Default unit: Hz	
<levelabs></levelabs>	Absolute power of the peak within the range	
	Default unit: dBm	
<levelrel></levelrel>	Relative power of the peak within the range related to channel power	
	Default unit: dB	
<delta></delta>	Power difference to margin power	
	Default unit: dB	
<limitcheck></limitcheck>	0 1	
	Indicates whether the power is below [0] or above [1] the limit line	
<unused1></unused1>	for future use	
<unused2></unused2>	for future use	
Example:	TRAC2:DATA? LIST Returns a list of SEM results for all slots in window 2.	
Usage:	Query only	

TRACe<n>[:DATA]? PWCDp

This command returns the pilot length in addition to the values returned for "TRACE<t>".

This command is only available for Code Domain Power or Channel Table evaluations (see chapter 3.1.2, "Evaluation Methods for Code Domain Analysis", on page 15).

Return values:

<codeclass></codeclass>	2 9 Code class of the channel
<channelno></channelno>	0 511 Code number of the channel
<abslevel></abslevel>	dBm Absolute level of the code channel at the selected channel slot.

<rellevel></rellevel>	% Relative level of the code channel at the selected channel slot ref- erenced to CPICH or total power.	
<timingoffset></timingoffset>	0 38400 [chips] Timing offset of the code channel to the CPICH frame start. The value is measured in chips. The step width is 256 chips in the case of code class 2 to 8, and 512 chips in the case of code class 9.	
<pilotlength></pilotlength>	0,2,4,8,16 The length of the pilot symbols. According to the 3GPP standard, the pilot length range depends on the code class. Default unit: symbols	
Example:	TRAC: DATA? PWCDp Returns a list of channel information, including the pilot length.	
Usage:	Query only	
Mode:	BTS application only	
Manual control:	See "Channel Table" on page 16 See "Code Domain Power" on page 18	

TRACe<n>[:DATA]? TPVSlot

This command returns a comma-separated list of absolute Power vs Slot results for all 16 slots. In contrast to the TRACE < t> parameter result, absolute values are returned.

Return values: <slotnumber></slotnumber>	015 CPICH slot number
<level></level>	dBm Slot level value
Example:	CALC2:FEED 'XTIM:CDP:PVSLot:ABSolute' Sets the evaluation for window 2 to POWER VS SLOT. TRAC2:DATA? TPVSlot Returns a list of absolute frequency errors for all slots in window 2.
Usage:	Query only
Manual control:	See "Power vs Slot" on page 26

10.7.4 Exporting Trace Results

RF measurement trace results can be exported to a file.

For more commands concerning data and results storage see the R&S FSW User Manual.

MMEMory:STORe:FINal	237
MMEMory:STORe <n>:TRACe</n>	237
FORMat:DEXPort:DSEParator	

MMEMory:STORe:FINal <FileName>

This command exports the marker peak list to a file.

The file format is *.dat.

Parameters: <filename></filename>	String containing the path and name of the target file.	
Return values: <traceno></traceno>	Always 1	
<frequency></frequency>	Frequency of the peak in Hz	
<level></level>	Absolute level of the peak in dBm	
<deltalevel></deltalevel>	Distance to the limit line in dB	
Example:	MMEM:STOR:FIN 'C:\test' Saves the current marker peak list in the file test.dat.	

MMEMory:STORe<n>:TRACe <Trace>, <FileName>

This command exports trace data from the specified window to an ASCII file.

Trace export is only available for RF measurements.

For details on the file format see "Reference: ASCII File Export Format" in the R&S FSW User Manual.

Parameters: <trace></trace>	Number of the trace to be stored
<filename></filename>	String containing the path and name of the target file.
Example:	MMEM:STOR1:TRAC 3, 'TEST.ASC' Stores trace 3 from window 1 in the file TEST.ASC.
Usage:	SCPI confirmed

FORMat:DEXPort:DSEParator <Separator>

This command selects the decimal separator for data exported in ASCII format.

СОММа		
Uses a co	Uses a comma as decimal separator, e.g. 4,05.	
POINt		
Uses a po	pint as decimal separator, e.g. 4.05.	
*RST:	*RST has no effect on the decimal separator. Default is POINt.	
	Uses a co POINt Uses a po	

 Example:
 FORM: DEXP: DSEP POIN

 Sets the decimal point as separator.

10.7.5 Retrieving RF Results

The following commands are required to retrieve the results of the 3GPP FDD RF measurements.

See also:

MMEMory:STORe:FINal on page 237

CALCulate <n>:LIMit<k>:FAIL</k></n>	238
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult?</m></n>	238
CALCulate <n>:MARKer<m>:Y?</m></n>	240
CALCulate <n>:STATistics:RESult<t></t></n>	240
	-

CALCulate<n>:LIMit<k>:FAIL

This command queries the result of a limit check.

Note that for SEM measurements, the limit line suffix <k> is irrelevant, as only one specific SEM limit line is checked for the currently relevant power class.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps. See also INITIATE: CONTINUOUS on page 214.

Return values: <result></result>	0 PASS 1 FAIL
Example:	INIT; *WAI Starts a new sweep and waits for its end. CALC:LIM3:FAIL? Queries the result of the check for limit line 3.
Usage:	SCPI confirmed
Manual control:	See "RF Combi" on page 34 See "Spectrum Emission Mask" on page 35

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? <Measurement>

This command queries the results of power measurements.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps. See also INITIATE: CONTINUOUS on page 214.

Query parameters:

<Measurement>

ACPower | MCACpower

ACLR measurements (also known as adjacent channel power or multi-carrier adjacent channel measurements).

Returns the power for every active transmission and adajcent channel. The order is:

- power of the transmission channel
- power of lower adjacent channel
- power of upper adjacent channel
- power of lower alternate channel 1
- power of upper alternate channel 1 (etc.)

The unit of the return values depends on the scaling of the y-axis:

- · logarithmic scaling returns the power in the current unit
- linear scaling returns the power in W

CN

Carrier-to-noise measurements.

Returns the C/N ratio in dB.

CN0

Carrier-to-noise measurements.

Returns the C/N ratio referenced to a 1 Hz bandwidth in dBm/Hz.

CPOWer

Channel power measurements.

Returns the channel power. The unit of the return values depends on the scaling of the y-axis:

logarithmic scaling returns the power in the current unit

linear scaling returns the power in W

For SEM measurements, the return value is the channel power of the reference range.

PPOWer

Peak power measurements.

Returns the peak power. The unit of the return values depends on the scaling of the y-axis:

· logarithmic scaling returns the power in the current unit

· linear scaling returns the power in W

For SEM measurements, the return value is the peak power of the reference range.

OBANdwidth | OBWidth

Occupied bandwidth. Returns the occupied bandwidth in Hz.

Manual control:See "Ch Power ACLR" on page 33
See "Occupied Bandwidth" on page 33
See "Power" on page 33
See "RF Combi" on page 34
See "Spectrum Emission Mask" on page 35
See "CCDF" on page 36

CALCulate<n>:MARKer<m>:Y?

This command queries the position of a marker on the y-axis.

If necessary, the command activates the marker first.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps. See also INITIAte:CONTINUOUS on page 214.

Return values: <result></result>	Result at the marker position.
Example:	INIT: CONT OFF Switches to single measurement mode. CALC: MARK2 ON Switches marker 2. INIT; *WAI Starts a measurement and waits for the end. CALC: MARK2: Y? Outputs the measured value of marker 2.
Usage:	Query only
Manual control:	See "CCDF" on page 36

CALCulate<n>:STATistics:RESult<t> <ResultType>

This command queries the results of a CCDF or ADP measurement.

Param	eters:
-------	--------

<resulttype></resulttype>	MEAN Average (=RMS) power in dBm measured during the measure- ment time.
	PEAK Peak power in dBm measured during the measurement time.
	CFACtor Determined crest factor (= ratio of peak power to average power) in dB.
	ALL Results of all three measurements mentioned before, separated by commas: <mean power="">,<peak power="">,<crest factor=""></crest></peak></mean>
Example:	CALC: STAT: RES2? ALL Reads out the three measurement results of trace 2. Example of answer string: 5.56,19.25,13.69 i.e. mean power: 5.56 dBm, peak power 19.25 dBm, crest factor 13.69 dB
Manual control:	See "CCDF" on page 36

10.8 Analysis

The following commands define general result analysis settings concerning the traces and markers.

•	Traces	41
•	Markers	42

10.8.1 Traces

The trace settings determine how the measured data is analyzed and displayed on the screen. In 3GPP FDD applications, only one trace per window can be configured for Code Domain Analysis.

DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n>	241
DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n>	242

DISPlay[:WINDow<n>]:TRACe<t>:MODE <Mode>

This command selects the trace mode.

In case of max hold, min hold or average trace mode, you can set the number of single measurements with [SENSe:]SWEep:COUNt. Note that synchronization to the end of the measurement is possible only in single sweep mode.

Parameters:

<Mode>

WRITe

Overwrite mode: the trace is overwritten by each sweep. This is the default setting.

AVERage

The average is formed over several sweeps. The "Sweep/Average Count" determines the number of averaging procedures.

MAXHold

The maximum value is determined over several sweeps and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is greater than the previous one.

MINHold

The minimum value is determined from several measurements and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is lower than the previous one.

VIEW

The current contents of the trace memory are frozen and displayed.

BLANk

Hides the selected trace.

*RST: Trace 1: WRITe, Trace 2-6: BLANk

Example:	<pre>INIT:CONT OFF Switching to single sweep mode. SWE:COUN 16 Sets the number of measurements to 16. DISP:TRAC3:MODE WRIT Selects clear/write mode for trace 3. INIT;*WAI Starts the measurement and waits for the end of the measurement.</pre>
Manual control:	See "Trace Mode" on page 113

DISPlay[:WINDow<n>]:TRACe<t>[:STATe] <State>

This command turns a trace on and off.

The measurement continues in the background.

Parameters:

<state></state>	ON OFF	
	*RST:	ON for TRACe1, OFF for TRACe2 to ${\bf 6}$
Example:	DISP:TRAC	3 ON
Usage:	SCPI confirm	ned

10.8.2 Markers

Markers help you analyze your measurement results by determining particular values in the diagram. In 3GPP FDD applications, only 4 markers per window can be configured for Code Domain Analysis.

•	Individual Marker Settings	242
	General Marker Settings	
	Marker Search and Positioning Settings	

10.8.2.1 Individual Marker Settings

CALCulate <n>:MARKer<m>[:STATe]</m></n>	242
CALCulate <n>:MARKer<m>:X</m></n>	243
CALCulate <n>:MARKer<m>:AOFF</m></n>	243
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	243
CALCulate <n>:DELTamarker:AOFF</n>	244
CALCulate <n>:DELTamarker<m>:X</m></n>	244
CALCulate <n>:DELTamarker<m>:X:RELative?</m></n>	244
CALCulate <n>:DELTamarker<m>:Y?</m></n>	244

CALCulate<n>:MARKer<m>[:STATe] <State>

This command turns markers on and off. If the corresponding marker number is currently active as a deltamarker, it is turned into a normal marker.

Parameters: <state></state>	ON OFF *RST: OFF
Example:	CALC:MARK3 ON Switches on marker 3.
Manual control:	See "Marker State" on page 116 See "Marker Type" on page 116

CALCulate<n>:MARKer<m>:X <Position>

This command moves a marker to a particular coordinate on the x-axis.

If necessary, the command activates the marker.

If the marker has been used as a delta marker, the command turns it into a normal marker.

Parameters: <position></position>	Numeric value that defines the marker position on the x-axis. The unit is either Hz (frequency domain) or s (time domain) or dB (statistics).	
	Range: The range depends on the current x-axis range.	
Example:	CALC:MARK2:X 1.7MHz Positions marker 2 to frequency 1.7 MHz.	
Manual control:	See "Stimulus" on page 116	

CALCulate<n>:MARKer<m>:AOFF

This command turns all markers off.

Example:	CALC:MARK:AOFF
	Switches off all markers.
Usage:	Event
Manual control:	See "All Markers Off" on page 117

CALCulate<n>:DELTamarker<m>[:STATe] <State>

This command turns delta markers on and off.

If necessary, the command activates the delta marker first.

No suffix at DELTamarker turns on delta marker 1.

Parameters:

<State> ON | OFF *RST: OFF Example: CALC:DELT2 ON Turns on delta marker 2.

Manual control:	See "Marker State" on page 116
	See "Marker Type" on page 116

CALCulate<n>:DELTamarker:AOFF

This command turns all delta markers off.

Example:	CALC:DELT:AOFF
	Turns all delta markers off.
Usage:	Event

CALCulate<n>:DELTamarker<m>:X <Position>

This command moves a delta marker to a particular coordinate on the x-axis.

If necessary, the command activates the delta marker and positions a reference marker to the peak power.

Parameters:	
-------------	--

<position></position>	Numeric value that defines the marker position on the x-axis.	
	Range:	The value range and unit depend on the measure- ment and scale of the x-axis.
Example:	CALC:DELT:X? Outputs the (absolute) x-value of delta marker 1.	
Manual control:	See "Stimulus" on page 116	

CALCulate<n>:DELTamarker<m>:X:RELative?

This command queries the relative position of a delta marker on the x-axis.

If necessary, the command activates the delta marker first.

Return values: <position></position>	Position of the delta marker in relation to the reference marker or the fixed reference.
Example:	CALC:DELT3:X:REL? Outputs the frequency of delta marker 3 relative to marker 1 or relative to the reference position.
Usage:	Query only

CALCulate<n>:DELTamarker<m>:Y?

This command queries the relative position of a delta marker on the y-axis.

If necessary, the command activates the delta marker first.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps. See also INITIATE: CONTINUOUS on page 214.

The unit depends on the application of the command.

Return values: <position></position>	Position of the delta marker in relation to the reference marker or the fixed reference.
Example:	<pre>INIT:CONT OFF Switches to single sweep mode. INIT; *WAI Starts a sweep and waits for its end. CALC:DELT2 ON Switches on delta marker 2. CALC:DELT2:Y? Outputs measurement value of delta marker 2.</pre>
Usage:	Query only

10.8.2.2 General Marker Settings

DISPlay:MTABle	-5
----------------	----

DISPlay:MTABle <DisplayMode>

This command turns the marker table on and off.

Parameters: <displaymode></displaymode>	ON Turns the marker table on. OFF Turns the marker table off. AUTO Turns the marker table on if 3 or more markers are active. *RST: AUTO
Example:	DISP:MTAB ON Activates the marker table.
Manual control:	See "Marker Table Display" on page 117

10.8.2.3 Marker Search and Positioning Settings

CALCulate <n>:MARKer<m>:FUNCtion:CPICh</m></n>	.246
CALCulate <n>:MARKer<m>:FUNCtion:PCCPch</m></n>	.246
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	.246
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	.246
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	.247
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	.247
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	.247
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	.247
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	.247
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	.247

CALCulate <n>:DELTamarker<m>:FUNCtion:CPICh</m></n>	248
CALCulate <n>:DELTamarker<m>:FUNCtion:PCCPch</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	248
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	248
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	

CALCulate<n>:MARKer<m>:FUNCtion:CPICh

This command sets the marker to channel 0.

This command is only available in Code Domain Power and Code Domain Error Power evaluations.

Example:	CALC:MARK:FUNC:CPIC

Manual control: See "Marker To CPICH" on page 120

CALCulate<n>:MARKer<m>:FUNCtion:PCCPch

This command sets the marker to the position of the PCCPCH.

This command is only available in code domain power and code domain error power evaluations.

Example: CALC:MARK:FUNC:PCCP

Manual control: See "Marker To PCCPCH" on page 120

CALCulate<n>:MARKer<m>:MAXimum:LEFT

This command moves a marker to the next lower peak.

The search includes only measurement values to the left of the current marker position.

Usage: Event

Manual control: See "Search Mode for Next Peak" on page 118

CALCulate<n>:MARKer<m>:MAXimum:NEXT

This command moves a marker to the next lower peak.

Usage: Event

Manual control:See "Search Mode for Next Peak" on page 118See "Search Next Peak" on page 119

CALCulate<n>:MARKer<m>:MAXimum:RIGHt

This command moves a marker to the next lower peak.

The search includes only measurement values to the right of the current marker position.

Usage: Event

See "Search Mode for Next Peak" on page 118 Manual control:

CALCulate<n>:MARKer<m>:MAXimum[:PEAK]

This command moves a marker to the highest level.

If the marker hasn't been active yet, the command first activates the marker.

Usage: Event

Manual control: See "Peak Search" on page 120

CALCulate<n>:MARKer<m>:MINimum:LEFT

This command moves a marker to the next minimum value.

The search includes only measurement values to the right of the current marker position.

Usage: Event

Manual control: See "Search Mode for Next Peak" on page 118

CALCulate<n>:MARKer<m>:MINimum:NEXT

This command moves a marker to the next minimum value.

Usage:	Event
Manual control:	See "Search Mode for Next Peak" on page 118 See "Search Next Minimum" on page 120

CALCulate<n>:MARKer<m>:MINimum:RIGHt

This command moves a marker to the next minimum value.

The search includes only measurement values to the right of the current marker position.

Usage: Event

Manual control: See "Search Mode for Next Peak" on page 118

CALCulate<n>:MARKer<m>:MINimum[:PEAK]

This command moves a marker to the minimum level.

If the marker hasn't been active yet, the command first activates the marker.

Usage: Event

Manual control: See "Search Minimum" on page 120

CALCulate<n>:DELTamarker<m>:FUNCtion:CPICh

This command sets the delta marker to channel 0.

This command is only available in Code Domain Power and Code Domain Error Power evaluations.

Example: CALC:DELT2:FUNC:CPIC

CALCulate<n>:DELTamarker<m>:FUNCtion:PCCPch

This command sets the delta marker to the position of the PCCPCH.

This command is only available in code domain power and code domain error power evaluations.

Example: CALC:DELT2:FUNC:PCCP

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT

This command moves a delta marker to the next higher value.

The search includes only measurement values to the left of the current marker position.

Usage: Event

Manual control: See "Search Mode for Next Peak" on page 118

CALCulate<n>:DELTamarker<m>:MAXimum:NEXT

This command moves a marker to the next higher value.

ch Mode for Next Peak" on page 118 ch Next Peak" on page 119

CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK]

This command moves a delta marker to the highest level.

If the marker hasn't been active yet, the command first activates the marker.

Usage: Event

Manual control: See "Peak Search" on page 120

CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt

This command moves a delta marker to the next higher value.

The search includes only measurement values to the right of the current marker position.

Configuring the Application Data Range (MSRA mode only)

Usage: Ev	ent
-----------	-----

Manual control: See "Search Mode for Next Peak" on page 118

CALCulate<n>:DELTamarker<m>:MINimum:LEFT

This command moves a delta marker to the next higher minimum value.

The search includes only measurement values to the right of the current marker position.

Usage: Event

Manual control: See "Search Mode for Next Peak" on page 118

CALCulate<n>:DELTamarker<m>:MINimum:NEXT

This command moves a marker to the next higher minimum value.

Usage:	Event
Manual control:	See "Search Mode for Next Peak" on page 118 See "Search Next Minimum" on page 120

CALCulate<n>:DELTamarker<m>:MINimum[:PEAK]

This command moves a delta marker to the minimum level.

If the marker hasn't been active yet, the command first activates the marker.

Usage: Event

Manual control: See "Search Minimum" on page 120

CALCulate<n>:DELTamarker<m>:MINimum:RIGHt

This command moves a delta marker to the next higher minimum value.

The search includes only measurement values to the right of the current marker position.

Usage: Event

Manual control: See "Search Mode for Next Peak" on page 118

10.9 Configuring the Application Data Range (MSRA mode only)

In MSRA operating mode, only the MSRA Master actually captures data; the MSRA applications define an extract of the captured data for analysis, referred to as the **application data**.

For the 3GPP FDD BTS application, the application data range is defined by the same commands used to define the signal capture in Signal and Spectrum Analyzer mode (see

Configuring the Application Data Range (MSRA mode only)

[SENSe:]CDPower: IQLength on page 177). Be sure to select the correct measurement channel before executing this command.

In addition, a capture offset can be defined, i.e. an offset from the start of the captured data to the start of the application data for the 3GPP FDD BTS measurement.

The **analysis interval** used by the individual result displays cannot be edited, but is determined automatically. However, you can query the currently used analysis interval for a specific window.

Remote commands exclusive to MSRA applications

The following commands are only available for MSRA application channels:

CALCulate:MSRA:WINDow <n>:IVAL?</n>	0
INITiate:REFResh	0
[SENSe:]MSRA:CAPTure:OFFSet	1

CALCulate:MSRA:WINDow<n>:IVAL?

This command queries the analysis interval for the current window. This command is only available in application measurement channels, not the MSRA View or MSRA Master.

Return values:

<intstart></intstart>	Start value of the analysis interval
	Default unit: us
<intstop></intstop>	Stop value of the analysis interval
	Default unit: us
Usage:	Query only

INITiate:REFResh

This function is only available if the Sequencer is deactivated (SYSTem: SEQuencer SYST:SEQ:OFF) and only for applications in MSRA mode, not the MSRA Master.

The data in the capture buffer is re-evaluated by the currently active application only. The results for any other applications remain unchanged.

Example: SYST:SEQ:OFF

Deactivates the scheduler INIT:CONT OFF Switches to single sweep mode. INIT; *WAI Starts a new data measurement and waits for the end of the sweep. INST:SEL 'IQ ANALYZER' Selects the IQ Analyzer channel. INIT:REFR Refreshes the display for the I/Q Analyzer channel. Event

Usage:

Querying the Status Registers

Manual control: See "Refresh" on page 97

[SENSe:]MSRA:CAPTure:OFFSet <Offset>

This setting is only available for applications in MSRA mode, not for the MSRA Master. It has a similar effect as the trigger offset in other measurements.

Parameters:

<offset></offset>	This parameter defines the time offset between the capture buffer start and the start of the extracted application data. The offset must be a positive value, as the application can only analyze data that is contained in the capture buffer.	
	Range: 0 to <record length=""> *RST: 0</record>	
Manual control:	See "Trigger Source" on page 79 See "Capture Offset" on page 82	

10.10 Querying the Status Registers

The following commands are required for the status reporting system specific to the 3GPP FDD applications. In addition, the 3GPP FDD applications also use the standard status registers of the R&S FSW (depending on the measurement type).

For details on the common R&S FSW status registers refer to the description of remote control basics in the R&S FSW User Manual.

*RST does not influence the status registers.

The STATUS: QUEStionable: DIQ register is described in "STATUS: QUEStionable: DIQ Register" on page 158.

The STATUS:QUEStionable:SYNC register contains application-specific information about synchronization errors or errors during pilot symbol detection.

Г

Querying the Status Registers

Bit	Definition
0	Not used.
1	Frame Sync failed This bit is set when synchronization is not possible within the application. Possible reasons: Incorrectly set frequency Incorrectly set level Incorrectly set scrambling code Incorrectly set values for Q-INVERT or SIDE BAND INVERT Invalid signal at input Antenna 1 synchronization is not possible (Time Alignment Error measurements, 3GPP FDD BTS only)
2	For Time Alignment Error measurements (3GPP FDD BTS only): bit is set if antenna 2 syn- chronization is not possible; Otherwise: not used.
3 to 4	Not used.
5	 Incorrect Pilot Symbol This bit is set when one or more of the received pilot symbols are not equal to the specified pilot symbols of the 3GPP standard. Possible reasons: Incorrectly sent pilot symbols in the received frame. Low signal to noise ratio (SNR) of the WCDMA signal. One or more code channels has a significantly lower power level compared to the total power. The incorrect pilots are detected in these channels because of low channel SNR. One or more channels are sent with high power ramping. In slots with low relative power to total power, the pilot symbols might be detected incorrectly (check the signal quality by using the symbol constellation display).
6 to 14	Not used.
15	This bit is always 0.

Table 10-9: Status error bits in STATus:QUEStionable:SYNC register for 3GPP FDD applications

STATus:QUEStionable:SYNC[:EVENt]?	252
STATus:QUEStionable:SYNC:CONDition?	253
STATus:QUEStionable:SYNC:ENABle	253
STATus:QUEStionable:SYNC:NTRansition	253
STATus:QUEStionable:SYNC:PTRansition	253

STATus:QUEStionable:SYNC[:EVENt]? < ChannelName>

This command reads out the EVENt section of the status register.

The command also deletes the contents of the EVENt section.

Query parameters:

<channelname></channelname>	String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.
Usage:	Query only

STATus:QUEStionable:SYNC:CONDition? < ChannelName>

This command reads out the CONDition section of the status register.

The command does not delete the contents of the EVENt section.

Query parameters: <channelname></channelname>	String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.
Usage:	Query only

STATus:QUEStionable:SYNC:ENABle <SumBit>,<ChannelName>

This command controls the ENABle part of a register.

The ENABle part allows true conditions in the EVENt part of the status register to be reported in the summary bit. If a bit is 1 in the enable register and its associated event bit transitions to true, a positive transition will occur in the summary bit reported to the next higher level.

Parameters:

<sumbit></sumbit>	Range:	0 to 65535
<channelname></channelname>	The parame	ining the name of the channel. ter is optional. If you omit it, the command works for active channel.

STATus:QUEStionable:SYNC:NTRansition <SumBit>,<ChannelName>

This command controls the Negative TRansition part of a register.

Setting a bit causes a 1 to 0 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters: <sumbit></sumbit>	Range:	0 to 65535
<channelname></channelname>	The parame	ining the name of the channel. ter is optional. If you omit it, the command works for active channel.

STATus:QUEStionable:SYNC:PTRansition <SumBit>,<ChannelName>

These commands control the Positive TRansition part of a register.

Setting a bit causes a 0 to 1 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters:

<SumBit> Range: 0 to 65535

Commands for Compatibility

<ChannelName> String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.

10.11 Commands for Compatibility

The following commands are provided for compatibility to other signal analyzers only. For new remote control programs use the specified alternative commands.

CALCulate <n>:FEED</n>	254
[SENSe:]CDPower:LEVel:ADJust	255
[SENSe:]CDPower:PRESet	
[]	

CALCulate<n>:FEED <Evaluation>

This command selects the evaluation method of the measured data that is to be displayed in the specified window.

Note that this command is maintained for compatibility reasons only. Use the LAYout commands for new remote control programs (see chapter 10.5.2, "Working with Windows in the Display", on page 204).

Parameters:

<evaluation></evaluation>	Type of evaluation you want to display. See the table below for available parameter values.			
Example:	INST:SEL BWCD Activates analog demodulator.			
	CALC:FEED CDP			
	Selects the display of the code domain power.			

Table 10-10: <Evaluation> parameter values for 3GPP FDD applications

String Parameter	Enum Parameter	Evaluation			
'XTIM:CDP:BSTReam'	BITStream	Bitstream			
'XTIM:CDP:COMP:CONStel- lation'	CCONst	Composite Constellation			
'XPOW:CDEPower'	CDEPower	Code Domain Error Power			
'XPOW:CDP' 'XPOW:CDP:ABSolute'	CDPower	Code Domain Power (absolute scaling)			
'XPOW:CDP:RATio'	CDPower	Code Domain Power (relative scaling) *)			
'XTIM:CDP:MACCuracy'	CEVM	Composite EVM			
'XTIM:CDP:ERR:CTABle'	CTABle	Channel Table			
'XTIMe:CDP:CHIP:EVM'	EVMChip	EVM vs Chip			
'XTIM:CDP:FVSLot'	FESLot	Frequency Error vs Slot			
*) Use [SENS:]CDP:PDIS ABS REL subsequently to change the scaling					

Commands for Compatibility

String Parameter	Enum Parameter	Evaluation		
'XTIMe:CDP:CHIP:MAGNi- MECHip tude'		Magnitude Error vs Chip		
'XTIM:CDP:ERR:PCDomain'	PCDerror	Peak Code Domain Error		
'XTIM:CDPower:PSVSlot'	PDSLot	Phase Discontinuity vs Slot		
'XTIMe:CDPower:CHIP:PHA Se'	РЕСНір	Phase Error vs Chip		
'XTIM:CDP:PVSLot' 'XTIM:CDP:PVSLot:ABSolute'	PSLot	Power vs Slot (absolute scaling)		
'XTIM:CDP:PVSLot:RATio'	PSLot	Power vs Slot (relative scaling)*)		
'XTIM:CDP:PVSYmbol'	PSYMbol	Power vs Symbol		
'XTIM:CDP:ERR:SUMMary'	RSUMmary	Result Summary		
'XPOW:CDP:RATio'	SCONst	Symbol Constellation		
'XTIM:CDP:SYMB:EVM'	SEVM	Symbol EVM		
'XTIMe:CDPower:SYM- Bol:EVM:MAGNitude'	SMERror	Symbol Magnitude Error		
'XTIMe:CDPower:SYM- Bol:EVM:PHASe'	SPERror	Symbol Phase Error		
*) Use [SENS:]CDP:PDIS ABS	REL subsequently	to change the scaling		

[SENSe:]CDPower:LEVel:ADJust

This command adjusts the reference level to the measured channel power. This ensures that the settings of the RF attenuation and the reference level are optimally adjusted to the signal level without overloading the R&S FSW or limiting the dynamic range by an S/ N ratio that is too small.

Note that this command is retained for compatibility reasons only. For new R&S FSW programs use [SENSe:]ADJust:LEVel on page 196.

[SENSe:]CDPower:PRESet

This command resets the 3GPP FDD channel to its predefined settings. Any RF measurement is aborted and the measurement type is reset to Code Domain Analysis.

Note that this command is retained for compatibility reasons only. For new R&S FSW programs use SYSTem: PRESet: CHANnel [:EXECute] on page 143.

Usage: Event

10.12 Programming Examples (R&S FSW-K73)

The following programming examples are based on the measurement examples described in chapter 9, "Measurement Examples", on page 126 for manual operation. The measurements are performed with an R&S FSW equipped with option R&S FSW-K73. Only the commands required to control the R&S FSW-K73 application are provided, not the signal generator.

The measurements are performed using the following devices and accessories:

- The R&S FSW with Application Firmware R&S FSW-K73: 3GPP FDD UE user equipment test
- The Vector Signal Generator R&S SMU with option R&S SMU-B45: digital standard 3GPP (options R&S SMU-B20 and R&S SMU-B11 required)
- 1 coaxial cable, 50Ω, approx. 1 m, N connector
- 1 coaxial cable, 50Ω, approx. 1 m, BNC connector

Test setup

- 1. Connect the RF output of the R&S SMU to the input of the R&S FSW.
- Connect the reference input (REF INPUT) on the rear panel of the R&S FSW to the reference input (REF) on the rear panel of the R&S SMU (coaxial cable with BNC connectors).
- Connect the external trigger input on the front panel of the R&S FSW (TRIGGER INPUT) to the external trigger output on the front panel of the R&S SMU (TRIGOUT1 of PAR DATA).

Settings on the R&S SMU

Setting	Value
Preset	
Frequency	2.1175 GHz
Level	0 dBm
Digital standard	WCDMA/3GPP
Link direction	UP/REVERSE
Test model	DPCCH_DPDCH960ksps
User equipment	UE 1
Digital standard - State	ON
Scrambling code	0000

The following measurements are described:

- Measurement 1: Measuring the Signal Channel Power......257

- Measurement 4: Triggered Measurement of Relative Code Domain Power.......261

10.12.1 Measurement 1: Measuring the Signal Channel Power

*RST //Reset the instrument INST:CRE:NEW MWCD, 'UEMeasurement' //Activate a 3GPP FDD UE measurement channel named "UEMeasurement" DISP:TRAC:Y:SCAL:RLEV 0 //Set the reference level to 0 dBm FREQ:CENT 2.1175 GHz //Set the center frequency to 2.1175 GHz CONF:WCDP:MS:MEAS POW //Select the power measurement DISP:TRAC:Y:SCAL:AUTO ONCE //Optimize the scaling of the y-axis for the current measurement INIT:CONT OFF //Stops continuous sweep SWE:COUN 100 //Sets the number of sweeps to be performed to 100 INIT; *WAI //Start a new measurement with 100 sweeps and wait for the end CALC:MARK:FUNC:POW:RES? CPOW //Retrieves the calculated total power value of the signal channel //Result: -1.02 [dB] TRAC:DATA? TRACE1 //Retrieve the trace data of the power measurement //Result: -1.201362252,-1.173495054,-1.187217355,-1.186594367,-1.171583891, //-1.188250422,-1.204138160,-1.181404829,-1.186317205,-1.197872400, [...]

Table 10-11: Trace results for power measurement

Frequency	Power level
-1.201362252	-1.173495054
-1.187217355	-1.186594367
-1.171583891	-1.188250422

10.12.2 Measurement 2: Determining the Spectrum Emission Mask

*RST //Reset the instrument

INST:CRE:NEW MWCD, 'UEMeasurement' //Activate a 3GPP FDD UE measurement channel named "UEMeasurement" DISP:TRAC:Y:SCAL:RLEV 0 //Set the reference level to 0 dBm FREQ:CENT 2.1175 GHz //Set the center frequency to 2.1175 GHz CONF:WCDP:MS:MEAS ESP //Select the spectrum emission mask measurement DISP:TRAC:Y:SCAL:AUTO ONCE //Optimize the scaling of the y-axis for the current measurement INIT:CONT OFF //Stops continuous sweep SWE:COUN 100 //Sets the number of sweeps to be performed to 100 $\,$ INIT; *WAI //Start a new measurement with 100 sweeps and wait for the end CALC:MARK:FUNC:POW:RES? CPOW //Retrieves the calculated channel power value of the reference channel //Result: -36.013 [dBm] CALC:LIM:FAIL? //Queries the result of the limit check //Result: 0 [passed] TRAC:DATA? LIST //Retrieves the peak list of the spectrum emission mask measurement //Result: //+1.000000000,-1.275000000E+007,-8.50000000E+006,+1.000000000E+006,+2.108782336E+009, //-8.057177734E+001,-7.882799530E+001,-2.982799530E+001,+0.000000000,+0.000000000,+0.00000000 //+2.000000000,-8.50000000E+006,-7.50000000E+006,+1.00000000E+006,+2.109000064E+009, //-8.158547211E+001,-7.984169006E+001,-3.084169006E+001,+0.000000000,+0.000000000,+0.00000000

```
//+3.000000000,-7.500000000E+006,-3.50000000E+006,+1.000000000E+006,+2.113987200E+009,
//-4.202708435E+001,-4.028330231E+001,-5.270565033,+0.000000000,+0.000000000,+0.000000000,
```

[...]

R an ge N o.	Start freq. [Hz]	Stop freq. [Hz]	RBW [Hz]	Freq. peak power [Hz]	Abs. peak power [dBm]	Rel. peak power [%]	Delta to margin [dB]	Limit check result	-	-	-
1	+1.00000 0000	-1.27500 0000E +007	-8.50000 0000E +006	+1.00000 0000E +006	+2.10878 2336E +009	-8.05717 7734E +001	-7.88279 9530E +001	-2.982 79953 0E +001	+ 0. 00 00 00 00 00 00	+ 0. 00 00 00 00 00 0	+0 00 00 00 00 00 0
2	+2.00000 0000	-8.50000 0000E +006	-7.50000 0000E +006	+1.00000 0000E +006	+2.10900 0064E +009	-8.15854 7211E +001	-7.98416 9006E +001	-3.084 16900 6E +001	+ 0. 00 00 00 00 00 00	+ 0. 00 00 00 00 00 00	+0 00 00 00 00 00 00
3	+3.00000 0000	-7.50000 0000E +006	-3.50000 0000E +006	+1.00000 0000E +006	+2.11398 7200E +009	-4.20270 8435E +001	-4.02833 0231E +001	-5.270 56503 3	+ 0. 00 00 00 00 00 0	+ 0. 00 00 00 00 00	+0 00 00 00 00 00 0

Table 10-12: Trace results for SEM measurement

10.12.3 Measurement 3: Measuring the Relative Code Domain Power

*RST //Reset the instrument INST:CRE:NEW MWCD, 'UEMeasurement' //Activate a 3GPP FDD UE measurement channel named "UEMeasurement" DISP:TRAC:Y:SCAL:RLEV 10 //Set the reference level to 10 dBm FREQ:CENT 2.1175 GHz //Set the center frequency to 2.1175 GHz DISP:TRAC:Y:SCAL:AUTO ONCE //Optimize the scaling of the y-axis for the current measurement INIT:CONT OFF //Stops continuous sweep SWE:COUN 100 //Set the number of sweeps to be performed to 100 INIT;*WAI //Start a new measurement with 100 sweeps and wait for the end CALC:MARK:FUNC:WCDP:MS:RES? CDPR //Retrieve the relative code domain power //Result: 0 [dB] TRAC:DATA? TRACE1

```
//Retrieve the trace data of the code domain power measurement
//Result: +8.000000000,+0.000000000,-4.319848537,-3.011176586,+0.000000000,
//+2.000000000,+1.000000000,-4.318360806,-3.009688854,+1.0000000000,
//+8.000000000,+0.000000000,-7.348078156E+001,-7.217211151E+001,+1.000000000,
// [...]
```

-----Synchronizing the Reference Frequencies-----

```
ROSC:SOUR EXT10
//Select the external frequency from the REF INPUT 1..20 MHZ connector as a reference
CALC:MARK:FUNC:WCDP:MS:RES? FERR
//Query the carrier frequency error
//Result: 0.1 [Hz]
```

-----Behaviour with Incorrect Scrambling Code-----

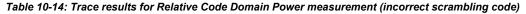
```
CDP:LCOD:DVAL 0001

//Change the scrambling code on the R&S FSW TO 0001 (default is 0000)

TRAC:DATA? TRACE1

//Retrieve the trace data of the code domain power measurement

//Result: 1.000000000,+8.000000000,+7.700000000E+001,-2.991873932E+001,-2.861357307E+001,


//+0.000000000,+8.000000000,+7.80000000E+001,-2.892916107E+001,-2.762399483E+001,

//+1.000000000,+8.000000000,+7.80000000E+001,-2.856664085E+001,-2.726147461E+001,

// [...]
```

Table 10-13: Trace results for Relative Code Domain Power measurement (correct scrambling code)

Code class	Channel no.	Abs. power level [dBm]	Rel. power level [%]	Timing offset [chips]
+8.00000000	+0.00000000	-4.319848537	-3.011176586	+0.00000000
+2.00000000	+1.00000000	-4.318360806	-3.009688854	+1.00000000
+8.00000000	+0.00000000	-7.348078156E +001	-7.217211151E +001	+1.00000000

Code class	Channel no.	Abs. power level [dBm]	Rel. power level [%]	Timing offset [chips]
1.00000000	+8.00000000	+7.700000000E +001	-2.991873932E +001	-2.861357307E +001
+0.00000000	+8.00000000	+7.80000000E +001	-2.892916107E +001	-2.762399483E +001
+1.00000000	+8.00000000	+7.80000000E +001	-2.856664085E +001	-2.726147461E +001

10.12.4 Measurement 4: Triggered Measurement of Relative Code Domain Power

*RST

//Reset the instrument INST:CRE:NEW MWCD, 'UEMeasurement' //Activate a 3GPP FDD UE measurement channel named "UEMeasurement" DISP: TRAC: Y: SCAL: BLEV 10 //Set the reference level to 10 dBm FREQ:CENT 2.1175 GHz //Set the center frequency to 2.1175 GHz CDP:LCOD:DVAL 0000 //Change the scrambling code on the R&S FSW TO 0000 TRIG:SOUR EXT //Set the trigger source to the external trigger //(TRIGGER INPUT connector on the front panel) DISP:TRAC:Y:SCAL:AUTO ONCE //Optimize the scaling of the y-axis for the current measurement INIT:CONT OFF //Stops continuous sweep SWE:COUN 100 //Set the number of sweeps to be performed to 100 INIT;*WAI //Start a new measurement with 100 sweeps and wait for the end CALC:MARK:FUNC:WCDP:MS:RES? TFR //Retrieve the trigger to frame (the offset between trigger event and // start of first captured frame) //Result: 0.00599987013 [ms]

----- Compensating a delay of the trigger event to the first captured frame -----

TRIG:HOLD 100 us
//Change the trigger offset to 100 us (=trigger to frame value)
CALC:MARK:FUNC:WCDP:MS:RES? TFR
//Retrieve the trigger to frame value
//Result: 0.00599987013 [ms]

10.12.5 Measurement 5: Measuring the Composite EVM

```
*RST
//Reset the instrument
INST:CRE:NEW MWCD,'UEMeasurement'
//Activate a 3GPP FDD UE measurement channel named "UEMeasurement"
DISP:TRAC:Y:SCAL:RLEV 10
//Set the reference level to 10 dBm
FREQ:CENT 2.1175 GHz
//Set the center frequency to 2.1175 GHz
TRIG:SOUR EXT
//Set the trigger source to the external trigger
```

```
//(TRIGGER INPUT connector on the front panel)
LAY:REPL '2', 'XTIM:CDP:MACC'
//Replace the second measurement window (Result Summary) by Composite EVM evaluation
DISP:WIND2:TRAC:Y:SCAL:AUTO ONCE
//Optimize the scaling of the y-axis for the Composite EVM measurement
INIT:CONT OFF
//Stops continuous sweep
SWE:COUN 100
//Set the number of sweeps to be performed to 100
INIT; *WAI
//Start a new measurement with 100 sweeps and wait for the end
TRAC2:DATA? TRACE1
//Retrieve the trace data of the composite EVM measurement
//Result: +0.00000000,+5.876136422E-001,
//+1.00000000,+5.916179419E-001,
//+2.00000000,+5.949081182E-001,
//[...]
```

Table 10-15: Trace results for Composite EVM measurement

(CPICH) Slot number	EVM
0	+5.876136422E-001
1	+5.916179419E-001
2	+5.949081182E-001

10.12.6 Measurement 6: Determining the Peak Code Domain Error

```
//Reset the instrument
INST:CRE:NEW MWCD, 'UEMeasurement'
//Activate a 3GPP FDD UE measurement channel named "UEMeasurement"
DISP:TRAC:Y:SCAL:RLEV 10
//Set the reference level to 10 \ensuremath{\mathsf{dBm}}
FREQ:CENT 2.1175 GHz
//Set the center frequency to 2.1175 GHz
TRIG:SOUR EXT
//Set the trigger source to the external trigger
//(TRIGGER INPUT connector on the front panel)
LAY:REPL '2', 'XTIM:CDP:ERR:PCD'
//Replace the second measurement window (Result Summary) by the
//Peak Code Domain Error evaluation
DISP:WIND2:TRAC:Y:SCAL:AUTO ONCE
//Optimize the scaling of the y-axis for the Composite EVM measurement
INIT:CONT OFF
//Stops continuous sweep
SWE:COUN 100
//Set the number of sweeps to be performed to 100
```

*RST

INIT;*WAI

```
//Start a new measurement with 100 sweeps and wait for the end
TRAC2:DATA? TRACE1
//Retrieve the trace data of the Peak Code Domain Error measurement
//Result: +0.00000000,-6.730751038E+001,
//+1.000000000,-6.687619019E+001,
//+2.000000000,-6.728615570E+001,
// [...]
```

Table 10-16: Trace results for Peak Code Domain Error measurement

Slot number	Peak Error
0	-6.730751038E+001
1	-6.687619019E+001
2	-6.728615570E+001

List of Remote Commands (3GPP FDD)

ABORt	
CALCulate:MARKer <m>:FUNCtion:ZOOM</m>	
CALCulate:MSRA:WINDow <n>:IVAL?</n>	250
CALCulate <n>:CDPower:Mapping</n>	
CALCulate <n>:DELTamarker:AOFF</n>	
CALCulate <n>:DELTamarker<m>:FUNCtion:CPICh</m></n>	
CALCulate <n>:DELTamarker<m>:FUNCtion:PCCPch</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:X</m></n>	
CALCulate <n>:DELTamarker <m>:X:RELative?</m></n>	
CALCulate <n>:DELTamarker<m>:Y?</m></n>	
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	
CALCulate <n>:FEED</n>	
CALCulate <n>:LIMit<k>:FAIL</k></n>	
CALCulate <n>:MARKer<m>:AOFF</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:CPICh</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:PCCPch</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:TAERror:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:WCDPower:MS:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:WCDPower[:BTS]:RESult?</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:RIGht CALCulate<n>:MARKer<m>:MAXimum[:PEAK]</m></n></m></n>	
CALCulate <n>:MARKer<m>:MARInum[.FEAK]</m></n>	
CALCulate <n>:MARKer<m>:MINIMUM:LEF1</m></n>	247 247
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	
CALCulate <n>:MARKer<m>:MINimum[:PEAK] CALCulate<n>:MARKer<m>:X</m></n></m></n>	
CALCulate <n>:MARKer<m>:Y?</m></n>	
CALCulate <n>:MARKer<m>[:STATe]</m></n>	
CALCulate <n>:STATistics:RESult<t></t></n>	
CONFigure:WCDPower:MS:CTABle:CATalog?	
CONFigure:WCDPower:MS:CTABle:COMMent	
CONFigure:WCDPower:MS:CTABle:DATA:HSDPcch	191

CONFigure:WCDPower:MS:CTABle:DELete	
CONFigure:WCDPower:MS:CTABle:EDATa	
CONFigure:WCDPower:MS:CTABle:EDATa:EDPCc	
CONFigure:WCDPower:MS:CTABle:NAME	
CONFigure:WCDPower:MS:CTABle:SELect	
CONFigure:WCDPower:MS:CTABle[:STATe]	
CONFigure:WCDPower:MS:MEASurement	
CONFigure:WCDPower[:BTS]:ASCale[:STATe]	
CONFigure:WCDPower[:BTS]:CTABle:CATalog?	
CONFigure:WCDPower[:BTS]:CTABle:COMMent	
CONFigure:WCDPower[:BTS]:CTABle:COMPare	
CONFigure:WCDPower[:BTS]:CTABle:COPY	
CONFigure:WCDPower[:BTS]:CTABle:DATA	
CONFigure:WCDPower[:BTS]:CTABle:DELete	
CONFigure:WCDPower[:BTS]:CTABle:NAME	
CONFigure:WCDPower[:BTS]:CTABle:SELect	
CONFigure:WCDPower[:BTS]:CTABle:TOFFset	
CONFigure:WCDPower[:BTS]:CTABle[:STATe]	
CONFigure:WCDPower[:BTS]:MCARrier:STATe	
CONFigure:WCDPower[:BTS]:MEASurement	
CONFigure:WCDPower[:BTS]:STD	
DIAGnostic <n>:SERVice:NSOurce</n>	
DISPlay:FORMat	
DISPlay:MTABle	
DISPlay[:WINDow <n>]:SELect</n>	
DISPlay[:WINDow <n>]:SIZE</n>	
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:AUTO ONCE</n>	
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:MAXimum</n>	
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:MINimum</n>	
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:PDIVision</n>	
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:RLEVel</n>	
DISPlay[:WINDow <n>]:TRACe:Y[:SCALe]:RLEVel:OFFSet</n>	
DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n>	
DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n>	
DISPlay[:WINDow <n>]:ZOOM:AREA</n>	
DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:AREA</zoom></n>	
DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:STATe</zoom></n>	
DISPlay[:WINDow <n>]:ZOOM:STATe</n>	211
FORMat:DEXPort:DSEParator	
FORMat[:DATA]	
INITiate:CONMeas	213
INITiate:CONTinuous	
INITiate:REFResh	
INITiate:SEQuencer:ABORt	215
INITiate:SEQuencer:IMMediate	
INITiate:SEQuencer:MODE	
INITiate:SEQuencer:REFResh[:ALL]	
INITiate[:IMMediate]	

INPut:ATTenuation	167
INPut:ATTenuation:AUTO	167
INPut:ATTenuation:PROTection:RESet	151
INPut:COUPling	151
INPut:DIQ:CDEVice	154
INPut:DIQ:RANGe:AUTO	155
INPut:DIQ:RANGe:COUPling	156
INPut:DIQ:RANGe[:UPPer]	156
INPut:DIQ:RANGe[:UPPer]:UNIT	156
INPut:DIQ:SRATe	
INPut:DIQ:SRATe:AUTO	
INPut:EATT	
INPut:EATT:AUTO	
INPut:EATT:STATe	
INPut:FILTer:HPASs[:STATe]	152
INPut:FILTer:YIG[:STATe]	152
INPut:GAIN:STATe	
INPut:GAIN[:VALue]	
INPut:IMPedance	
INPut:SELect	
INSTrument:CREate:REPLace	
INSTrument:CREate[:NEW]	
INSTrument:DELete	
INSTrument:LIST?	
INSTrument:REName	
INSTrument[:SELect]	
LAYout:ADD[:WINDow]?	
LAYout:CATalog[:WINDow]?	
LAYout:IDENtify[:WINDow]?	
LAYout:REMove[:WINDow]	
LAYout:REPLace[:WINDow]	
LAYout:SPLitter	
LAYout:WINDow <n>:ADD?</n>	
LAYout:WINDow <n>:IDENtify?</n>	
LAYout:WINDow <n>:REMove</n>	
LAYout:WINDow <n>:REPLace</n>	
MMEMory:STORe:FINal	
MMEMory:STORe <n>:TRACe</n>	
OUTPut:DIQ	
OUTPut:DIQ	
OUTPut:DIQ:CDEVice	
OUTPut:TRIGger <port>:DIRection</port>	
OUTPut:TRIGger <port>:LEVel</port>	
OUTPut:TRIGger <port>:OTYPe</port>	
OUTPut:TRIGger <port>:PULSe:IMMediate</port>	
OUTPut:TRIGger <port>:PULSe:LENGth</port>	
STATus:QUEStionable:DIQ:CONDition?	
STATUS.QUEStionable.DIQ.EONDition?	

STATus:QUEStionable:DIQ:NTRansition	
STATus:QUEStionable:DIQ:PTRansition	160
STATus:QUEStionable:DIQ[:EVENt]?	
STATus:QUEStionable:SYNC:CONDition?	
STATus:QUEStionable:SYNC:ENABle	
STATus:QUEStionable:SYNC:NTRansition	
STATus:QUEStionable:SYNC:PTRansition	
STATus:QUEStionable:SYNC[:EVENt]?	252
SYSTem:PRESet:CHANnel[:EXECute]	143
SYSTem:SEQuencer	
TRACe <n>[:DATA]?</n>	231
TRACe <n>[:DATA]?</n>	
TRACe <n>[:DATA]?</n>	
TRACe <n>[:DATA]?</n>	
TRACe <n>[:DATA]?</n>	234
TRACe <n>[:DATA]?</n>	
TRACe <n>[:DATA]?</n>	
TRIGger[:SEQuence]:DTIMe	169
TRIGger[:SEQuence]:HOLDoff[:TIME]	169
TRIGger[:SEQuence]:IFPower:HOLDoff	170
TRIGger[:SEQuence]:IFPower:HYSTeresis	170
TRIGger[:SEQuence]:LEVel:BBPower	170
TRIGger[:SEQuence]:LEVel:IFPower	171
TRIGger[:SEQuence]:LEVel:IQPower	171
TRIGger[:SEQuence]:LEVel:RFPower	171
TRIGger[:SEQuence]:LEVel:VIDeo	172
TRIGger[:SEQuence]:LEVel[:EXTernal <port>]</port>	170
TRIGger[:SEQuence]:SLOPe	172
TRIGger[:SEQuence]:SOURce	172
TRIGger[:SEQuence]:TIME:RINTerval	173
[SENSe:]ADJust:ALL	194
[SENSe:]ADJust:CONFigure:DURation	
[SENSe:]ADJust:CONFigure:DURation:MODE	195
[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer	195
[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer	
[SENSe:]ADJust:LEVel	
[SENSe:]AVERage <n>:COUNt</n>	
[SENSe:]CDPower:ANTenna	
[SENSe:]CDPower:BASE	176
[SENSe:]CDPower:CODE	
[SENSe:]CDPower:CPB	
[SENSe:]CDPower:ETCHips	201
[SENSe:]CDPower:FILTer[:STATe]	177
[SENSe:]CDPower:FRAMe[:VALue]	
[SENSe:]CDPower:HSDPamode	

[SENSe:]CDPower:HSLot	201
[SENSe:]CDPower:ICTReshold	182
[SENSe:]CDPower:IQLength	177
[SENSe:]CDPower:LCODe:DVALue	149
[SENSe:]CDPower:LCODe:SEARch:LIST?	147
[SENSe:]CDPower:LCODe:SEARch[:IMMediate]?	147
[SENSe:]CDPower:LCODe:TYPE	150
[SENSe:]CDPower:LCODe[:VALue]	149
[SENSe:]CDPower:LEVel:ADJust	255
[SENSe:]CDPower:MAPPing	197
[SENSe:]CDPower:MIMO	148
[SENSe:]CDPower:NORMalize	199
[SENSe:]CDPower:PCONtrol	148
[SENSe:]CDPower:PDIFf	199
[SENSe:]CDPower:PDISplay	199
[SENSe:]CDPower:PREFerence	200
[SENSe:]CDPower:PRESet	255
[SENSe:]CDPower:QINVert	177
[SENSe:]CDPower:SBANd	178
[SENSe:]CDPower:SFACtor	150
[SENSe:]CDPower:SLOT	197
[SENSe:]CDPower:STYPe	178
[SENSe:]CDPower:UCPich:CODE	179
[SENSe:]CDPower:UCPich:PATTern	179
[SENSe:]CDPower:UCPich[:STATe]	179
[SENSe:]FREQuency:CENTer	162
[SENSe:]FREQuency:CENTer:STEP	162
[SENSe:]FREQuency:CENTer:STEP:AUTO	163
[SENSe:]FREQuency:OFFSet	163
[SENSe:]MSRA:CAPTure:OFFSet	251
[SENSe:]SWEep:COUNt	192

Index

Symbols

3GPP FDD	
Basics	40
Measurement examples	126
Measurements	12
Programming examples	256
Remote control	
RF measurements	32

Α

Aborting	
Sweep	96 97
AC/DC coupling	
ACLR	
3GPP FDD results	33
Configuration (3GPP FDD)	102
RF Combi	3/
Activating	
3GPP FDD measurements (remote)	140
Adjacent channel leakage ratio	
see ACLR	22
	33
Amplitude	400
Configuration (remote)	
Configuration (softkey)	
Settings	
Analysis	
BTS Code Domain Settings	
Mode	
Remote control	
RF (remote)	
RF measurements	
Settings	106
Analysis interval	
MSRA	. 84, 85, 176
Antenna	
Diversity	61
Number	61
Synchronization	86
Attenuation	
Auto	
Configuration (remote)	
Displayed	
Electronic	
Manual	
Option B25	
Protective (remote)	
Auto all	
Softkey	98
Auto level	
Hysteresis	00 100
Reference level	
Softkey	,
Auto scaling	
Auto scrambling code	<u> </u>
Softkey	62, 98
Autosearch	-
Channel detection	
Scrambling code	62, 98

Auto settings	97
Meastime Auto (softkey)	99
Meastime Manual (softkey)	99
Remote control	193
Average count	97
Avg. RCDE	13
Avg Power Inact Chan	13

в

Bandwidth	
Coverage, MSRA mode	52
Menu	55
Base station	
see BTS	8
Base transceiver station	
see BTS	8
Bitstream	
Evaluation	
Parameter	111
Trace results	226
Branch	
Evaluation range	108, 109
BTS	8
Standard (ACLR)	102

С

Capture Length	84
Capture offset	
MSRA applications	82, 85
Remote	251
Softkey	82, 85
Carrier frequency error	
Relationship to synchronization mode	
CCDF	
3GPP FDD results	36
Configuration (3GPP FDD)	
CDA	
Analysis settings (BTS)	
Analysis settings (UE)	
Channel results	
Configuring	
Configuring (remote)	145
Evaluation settings BTS (remote)	
Evaluation settings UE (remote)	
Parameters	
Performing	
Results	
CDEP	
Evaluation	
Trace results	
CDP	223
CDF Channel parameter	45
Channel table	
Evaluation	
Measurement example	
Programming example	
Trace results	
Center frequency	
Measurement example	
Softkey	
Step size	

Ch. SF Channel bandwidth	
MSRA mode	52
Channel detection	
Autosearch	
Configuring	
Methods	
Predefined tables	
Remote control	
Search mode	
Softkey	
Channel number	
Channel power	
ACLR, see ACLR Measurement example	
Programming example	
Channels	
Active	
Bandwidth	
Displayed	
Evaluation range	
Inactive, showing	
Mapping	
No of Active	
Number	
Status	
Channel table	
Configuration	17
Channel tables	
Comparison	43, 89
Configuring	
Configuring (remote)	
Configuring channels (remote)	
Copying	
Creating	
Creating from input	
Deleting	
Details (BTS)	
Details (UE)	
Editing	
Evaluation	
Managing Managing (remote)	
Predefined	
Restoring	
Selecting	
Settings	
Sorting	
Trace results	
Channel types	
BTS	
Compressed	
Configuring in table	93, 95
Control	
CPICH	42, 44
CPRSD	44
DPCCH	47
DPCH	,
DPDCH	
EDPCCH	
EDPDCH	
HSDPCCH	
MIMO	
Parameter values (remote)	
PCCPCH	
PICH	
PSCH	44

SCCPCH 44 SCH 42, 44 Special 42 SSCH 44 Synchronization 43 UE 46 Chip rate error 13 Chip rate error 13 Chips 42 Code class 42 Relationship to spreading factor 40 Code domain 40 Code domain Analysis see CDA see CDA 12 Code domain error power see CDP see CDP 13 Code Domain Power 18 Softkey 109, 111 Code number 40 Softkey 109, 111 Codes 40 Number per channel 40 Complementary cumulative distribution function see CDF See CDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Maesurement example <td< th=""></td<>
Special42SSCH44Synchronization43UE46Chip rate error13Chips42Code class42Relationship to spreading factor40Code domain40Code domain and spiss40See CDA12Code domain error power40See CDP13Code Domain Power13Softkey109, 111Code number40Softkey109, 111Code Power Display109, 112Codes40Complementary cumulative distribution functionsee CDF36Composite Constellation19Trace results225Composite EVM13Evaluation20Measurement example135Programming example261Trace results224Constellation20Measurement example135Programming example261Conflict61Conflict61Constellation94Constellation111Constellation46Continue single sweep50Softkey97Continuous sweep50Softkey96Coupling96
SSCH44Synchronization43UE46Chip rate error13Chips42Code class42Relationship to spreading factor40Relationship to symbol rate40Code domain40Code domain Analysis5see CDA12Code domain Power13Softkey109, 111Code domain settings50ftkeySoftkey109, 111Code number40Code Power Display110, 112Codes40Number per channel40Complementary cumulative distribution functionsee CDF36Composite Constellation19Trace results225Composite EVM13Evaluation20Measurement example135Programming example261Trace results224Compressed Mode61Conflict61Constellation111Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation94Constellation97Continuous sweep96
Synchronization 43 UE 46 Chip rate error 13 Chips 42 Code class 42 Relationship to spreading factor 40 Relationship to symbol rate 40 Code domain 40 Code domain 40 Code domain Analysis 5 see CDA 12 Code domain error power 5 see CDF 13 Code domain Power 18 Code domain settings 5 Softkey 109, 111 Code number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function 5 see CDF 36 Composite Constellation 20 Measurement example 13 Evaluation 20 Measurement example 21 Conflict 61 Conflict 61 Conflict 61 Constellation points 111 </td
UE 46 Chip rate error 13 Chips 42 Code class 40 Relationship to spreading factor 40 Relationship to symbol rate 40 Code domain 40 Code domain Analysis 40 See CDA 12 Code domain error power 38 See CDEP 13 Code domain settings 50 Softkey 109, 111 Code number 40 See Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CDF see CDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Constellation 94 Constella
Chip rate error 13 Chips 42 Code class 40 Relationship to symbol rate 40 Code domain 40 Code domain Analysis 12 See CDA 12 Code domain error power 13 See CDP 13 Code Domain Power 18 Sode domain settings 50ftkey Softkey 109, 111 Code number 40 See CDP 100, 111 Code number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CDF See CDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Continict 61 Constellation
Chips 42 Code class Relationship to spreading factor 40 Relationship to symbol rate 40 Code domain 40 Code domain Analysis see CDA see CDA 12 Code domain error power see CDP see CDP 13 Code domain settings 50ftkey Softkey 109, 111 Code number 40 See Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF See CDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Constellation 111 Constellation
Code class Relationship to spreading factor 40 Relationship to symbol rate 40 Code domain 40 Code Domain Analysis see CDA see CDA 12 Code domain error power 12 See CDEP 13 Code domain settings 109, 111 Code number 40 See CDP 18 Code number 40 Code Power Display 109, 111 Codes 40 Number per channel 40 Complementary cumulative distribution function see CDF See CDF 36 Composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 64 Channel table 94 Constellation 94 Parameter B 111
Relationship to spreading factor 40 Relationship to symbol rate 40 Code domain 40 Code Domain Analysis 5 see CDA 12 Code domain error power 13 Code Domain Power 13 Code domain settings 50 Softkey 109, 111 Code number 40 Soe CDP 18 Code Oower Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function 36 See CDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 94 Constellation 94 Constellation 94 Constellation 94 Constellation 94 Co
Relationship to symbol rate 40 Code domain 40 Code Domain Analysis 12 see CDA 12 Code domain error power 13 See CDEP 13 Code Domain Power 18 Sode domain settings 50ftkey Softkey 109, 111 Code number 40 See Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Conflict 74 Channel table 94 Constellation 94 Parameter
Code domain 40 Code Domain Analysis 12 See CDA 12 Code domain error power 13 See CDEP 13 Code Domain Power 18 Sode domain settings 50ftkey Softkey 109, 111 Code number 40 See Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Parameter B 111 Constellation points 94 Mapping in MI
Code Domain Analysis 12 See CDA 12 Code domain error power 13 See CDEP 13 Code Domain Power 18 Sode domain settings 109, 111 Code number 40 Softkey 109, 111 Code number 40 Sode Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF See CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Parameter B 111 Constellation
see CDA 12 Code domain error power 13 See CDEP 13 Code Domain Power 18 Sode domain settings 109, 111 Code number 40 Softkey 109, 111 Code number 40 Sode Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF See CDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation points 111 Mapping in MIMO channels 46 Continue single sweep 50 Softkey 97 Continuous sweep 50 Softkey 96 Coupling </td
Code domain error power see CDEP 13 Code Domain Power 18 See CDP 18 Code domain settings 109, 111 Code number 40 see Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Constellation 94 Constellation points 46 Mapping in MIMO channels 46 Continue single sweep 97 Softkey 97 Continuous sweep 96
see CDEP 13 Code Domain Power 18 See CDP 18 Code domain settings 109, 111 Code number 40 see Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Conflict 94 Constellation 94 Constellation points 46 Mapping in MIMO channels 46 Continue single sweep 97 Continuous sweep 96 Coupling 96
Code Domain Power 18 See CDP 109, 111 Code domain settings 109, 111 Code number 40 see Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 46 Parameter B 111 Constellation 46 Continue single sweep 50 Softkey 97 Continuous sweep 50 Softkey 96 Coupling 96
see CDP 18 Code domain settings 109, 111 Code number 40 see Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 40 Parameter B 111 Constellation 46 Continue single sweep 50 Softkey 97 Continuous sweep 50 Softkey 96 Coupling 96
Code domain settings 109, 111 Code number 40 See Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 135 Programming example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 40 Parameter B 111 Constellation 40 Parameter B 111 Constellation 40 Parameter B 97 Continue single sweep 97 Continuous sweep 96 Coupling 96
Softkey 109, 111 Code number 40 See Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Parameter B 111 Constellation 46 Continue single sweep 97 Softkey 97 Continuous sweep 96 Coupling 96
Code number 40 see Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Parameter B 111 Constellation points 46 Mapping in MIMO channels 46 Continue single sweep 97 Softkey 97 Continuous sweep 96 Coupling 96
see Channel number 40 Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function see CCDF see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Constellation 94 Continue single sweep 97 Softkey 97 Continuous sweep
Code Power Display 110, 112 Codes 40 Number per channel 40 Complementary cumulative distribution function 36 see CCDF 36 Composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Constellation 94 Continue single sweep 97 Softkey 97 Continuous sweep 96 Softkey 96 Coupling 96
Codes 40 Number per channel 40 Complementary cumulative distribution function 36 composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Constellation 94 Constellation 94 Constellation 94 Constellation 94 Constellation points 94 Mapping in MIMO channels 46 Continue single sweep 97 Softkey 97 Continuous sweep 96 Coupling 96
Number per channel 40 Complementary cumulative distribution function 36 Composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 04 Channel table 94 Constellation 94 Constellation 94 Constellation 94 Constellation 94 Constellation 94 Constellation points 94 Mapping in MIMO channels 46 Continue single sweep 97 Softkey 97 Continuous sweep 96 Coupling 96
Complementary cumulative distribution function see CCDF 36 Composite Constellation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 64 Constellation 94 Constellation points 111 Mapping in MIMO channels 46 Continue single sweep 50 Softkey 97 Continuous sweep 96 Coupling 96
see CCDF 36 Composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Constellation 94 Constellation 94 Constellation points 111 Mapping in MIMO channels 46 Continue single sweep 97 Softkey 97 Continuous sweep 96 Coupling 96
Composite Constellation 19 Evaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Conflict 94 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 50 Softkey 97 Continuous sweep 96 Coupling 96
Évaluation 19 Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 04 Channel table 94 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 50ftkey Softkey 97 Continuous sweep 96 Coupling 96
Trace results 225 Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Conflict 94 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 97 Softkey 97 Continuous sweep 96 Coupling 96
Composite EVM 13 Evaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 50 Softkey 97 Continuous sweep 96 Coupling 96
Évaluation 20 Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 50ftkey Softkey 97 Continuous sweep 96 Coupling 96
Measurement example 135 Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 50ftkey Softkey 97 Continuous sweep 96 Coupling 96
Programming example 261 Trace results 224 Compressed Mode 61 Conflict 61 Channel table 94 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 507 Softkey 97 Continuous sweep 96 Coupling 96
Trace results 224 Compressed Mode 61 Conflict 94 Constellation 94 Parameter B 111 Constellation points 46 Continue single sweep 507 Softkey 97 Continuous sweep 507 Softkey 96 Coupling 96
Compressed Mode 61 Conflict 94 Constellation 94 Parameter B 111 Constellation points 111 Constellation points 46 Continue single sweep 507 Softkey 97 Continuous sweep 96 Coupling 96
Conflict Channel table
Channel table
Constellation Parameter B
Parameter B
Constellation points Mapping in MIMO channels
Mapping in MIMO channels
Continue single sweep Softkey
Softkey
Continuous sweep Softkey
Softkey
Coupling
Coupling Input (remote) 151
Input (remote) 151
CPICH 44
Mode 86
Power reference 110
Slot, displayed 10
Softkey 120
Softkey

see IQ offset 110, 112

Data acquisition

Data format

Delta markers

DC offset

Diagrams	
Evaluation method 37	7
Footer information1	1
DiglConf	
Softkey, see also R&S DigIConf 68	8
Digital Baseband Interface (B17) 7	
Connected instrument 72	
Input settings 66	
Input status (remote) 154	
Output connection status (remote) 157	
Output settings	
Status registers 158	
Digital I/Q	
Connection information	2
Input connection information 68	8
Input settings 66	6
Output settings	1
Output settings information 7	1
Triggering	
Digital input	
Connection information 68	8
Digital output	
Enabling7	1
Display Config	
Softkey 12, 54	4
DPCH	4
Drop-out time	
Trigger	1

Ε

Electronic input attenuation
Eliminating
IQ offset 110, 112, 199
Tail chips 112
Errors
Device connections (B17) 158
Evaluation methods
Remote 204
Evaluation range
Branch
Channel 107
Remote control 196
Settings
Slot
Softkey 106
Evaluations
Bitstream 111
CDA 15
RF
Selecting 12
TAE
EVM
Symbol 14
EVM vs Chip
Evaluation 21
Trace results 227
Exporting
I/Q data
Scrambling codes 63
Trace results (remote) 236
External trigger
Level (remote) 170
Softkey 80

F

Filters	
High-pass (remote)	152
High-pass (RF input)	
YIG (remote)	
Format	
Data (remote)	229
Scrambling codes (BTS)	62
Scrambling codes (UE)	63
Frames	
Capture mode	84
Evaluation range 85,	108
Number to capture	84
Selected 85,	108
Free Run	
Trigger (softkey)	80
Frequency	
Configuration (remote)	162
Configuration (softkey)	76
Frequency Error vs Slot	
Evaluation	22
Trace results	227
Frequency offset	78
Frontend	
Configuration	72
Configuration (remote)	162
Full scale level	
Digital I/Q	67
Digital I/Q (remote) 155,	156
Unit, digital I/Q (remote)	156
Full slot	
Evaluation	112
	112

н

Half slot	
Evaluation	112
Hardware settings	
CDA, Displayed	10
High-pass filter	
Remote	152
RF input	66
HS-DPA/UPA	60, 64
HS-PDSCH	45
HS-SSCH	45
Hysteresis	
Lower (Auto level)	100
Trigger	81
Upper (Auto level)	

I

I/Q data	
Exporting	56
Importing	56
I/Q imbalance	13
I/Q offset	13
I/Q Power	
Trigger level (remote)	171
IF Power	
Trigger level (remote)	171
Impedance	
Remote	152
Setting	
Importing	
I/Q data	56

Index

Inactive Channel ThresholdInput	88
Coupling	65
Coupling (remote)	
Digital Baseband Interface (B17) settings	66
Overload (remote)	151
RF	65
Settings	64, 75
Source, connection errors	158
Source, digital I/Q	67
Source, Radio frequency (RF)	
Source Configuration (softkey)	64
Input sample rate (ISR)	
Digital I/Q	67
Installation	8
Invert Q	84
IQ offset	
Eliminating 110,	112, 199

Κ

Keys	
MKR ->	119
Peak Search	120
RUN CONT	
RUN SINGLE	96, 97

L

Lines	
Menu	
Lower Level Hysteresis	
Softkey	100

Μ

Mag Error vs Chip	
Evaluation	22
Trace results	228
Mapping	
Channel	14
Channel table	95
I/Q branches	95
Marker Functions	
Menu	55
Markers	
Configuration (remote)	242, 245
Configuring	114
Configuring (softkey)	114
Deactivating	117
Delta markers	116
Minimum	120
Next minimum	120
Next peak	119
Peak	120
Positioning	119
Positioning (remote)	245
Querying position (remote)	240
Search settings	118
Settings (remote)	242
Setting to CPICH	120
Setting to PCCPCH	120
State	116
Table	117
Table (evaluation method)	23, 38
Туре	116

Marker table	
Configuring	117
Evaluation method	23, 38
Maximizing	
Windows (remote)	203
Maximum	
Y-axis	
Measurement channel	
Creating (remote)	
Deleting (remote)	
Querying (remote)	
Renaming (remote)	
Replacing (remote)	140
Measurement examples	
3GPP FDD	
Composite EVM	
Incorrect center frequency	
Incorrect scrambling code	
PCDE	
Reference frequency	
Relative code domain power	
SEM	
Signal channel power	
Triggered CDP	133
Measurements	440
Interval	
Selecting	
Selecting (remote)	
Starting (remote)	212
Measurement time	00
Auto settings	
Measurement types CDA	10
RF TAE	
MIMO	
Channel types	46
Mapping to constellation points	
Measurement mode	
Remote control	
Minimum	
Marker positioning	120
Next	
Softkey	
Y-axis	
MKR ->	
Key	119
Mobile station	
see UE (user equipment)	8
Modulation type	
MSRA	
Analysis interval	84, 85, 176
Operating mode	
RF measurements	
MSRA applications	
Capture offset	82, 85
Capture offset (remote)	251
MSRA Master	
Data coverage	52
Multiple	
Measurement channels	
Multiple zoom	100

Ν

Next Minimum	
Marker positioning	. 120
Softkey	120
Next Peak	
Marker positioning	. 119
Softkey	. 119
Noise	
Source	69

0

OBW	
3GPP FDD results	33
Configuration (3GPP FDD)	102
RF Combi	
Occupied bandwidth	
see OBW	33
Offset	
Analysis interval	82, 85
Frequency	
Reference level	73
Timing	13, 14, 89, 93
Options	
B13	66, 152
B25	75
Output	
Configuration (remote)	161
Configuration (softkey)	68
Digital Baseband Interface (B17) settings	71
Digital Baseband Interface (B17) status	157
Digital I/Q (remote)	157, 161
Noise source	69
Power measurement, Configuration	103
Settings	
Trigger	69, 82
Overload	
RF input (remote)	151
Overview	
Configuration 3GPP FDD	58

Ρ

PCCPCH 44
Softkey 120
PCDE
Evaluation 24
Measurement example 136
Programming example 262
Trace results
P-CPICH
Synchronization mode 86
Peak Code Domain Error
see PCDE
Peak list
Evaluation method 38
Peaks
Marker positioning 120
Next
Softkey 120
Peak search
Key 120
Mode 118
Performing
3G FDD measurement 122

Phase Discontinuity vs Slot	
Evaluation	24
Trace results	227
Phase Error vs Chip	
Evaluation	25
Trace results	
PICH	
Pilot bits	
Channel table	
Number of	
PilotL	
Pk CDE	
Power	
Channel (Meas example)	126 257
Channels	1/ 33 103
Control	
Difference to previous slot	
Displayed Inactive channels	10
Reference	110, 112
Power vs Slot	
Evaluation	
Trace results	224
Power vs Symbol	
Evaluation	
Trace results	225
Preamplifier	
Setting	
Softkey	
Predefined tables	
Channel detection	43
Presetting	
Channels	59, 255
Pre-trigger	81
Programming examples	
3GPP FDD	256
Composite EVM	
Incorrect scrambling code	
PCDE	
Reference frequency	
Relative code domain power	
SEM	
Signal channel power	
Triggered CDP	
Protection	
RF input (remote)	151
PSCH	
Pwr Abs/Pwr Rel	

R

R&S DiglConf	68
R&S EX-IQ-BOX	
DiglConf	68
Range	
Scaling	
RCDE	14
Average	13
Reference frequency	
Measurement example	130
Programming example	259
Reference level	
Auto level	
Digital I/Q	68
Displayed	10
Offset	
Offset (softkey)	
· • • •	

Softkey	73
Unit	
Value	
Reference power	110
Refreshing	
MSRA applications	
MSRA applications (remote)	
Softkey	97
Remote commands	054
Obsolete	
Resetting RF input protection	151
Restoring	
Channel settings	50 255
Result display	59, 255
Configuration	54
Configuration (remote)	
Result Display	
Result displays	•
Diagram	37
Marker table	
Peak list	
Result Summary	38
Result list	
Evaluation	31
Results	12
Calculated (remote)	
Data format (remote)	229
Evaluating	
Exporting (remote)	
Retrieving (remote)	
RF (remote)	
Trace (remote)	
Trace data query (remote)	
Updating the display	
Updating the display (remote)	250
Result summary	
Channel results Evaluation	
General results	
Trace results	
Result Summary	
Evaluation method	38
Result display	
Retrieving	
Calculated results (remote)	218
Results (remote)	
RF Results (remote)	238
Trace results (remote)	228
RF attenuation	
Auto (softkey)	
Manual (softkey)	74
RF Combi	
Configuration (3GPP FDD)	
Measurement	
RF input	
Overload protection (remote)	
	151
Remote	151
RF measurements	151 . 151, 153
RF measurements 3GPP FDD	151 . 151, 153 32
RF measurements 3GPP FDD Analysis	151 . 151, 153 32 106
RF measurements 3GPP FDD Analysis Analysis (remote)	151 . 151, 153 32 106 202
RF measurements 3GPP FDD Analysis Analysis (remote) Configuration	151 . 151, 153 32 106 202 101
RF measurements 3GPP FDD Analysis Analysis (remote) Configuration Configuration (remote)	151 . 151, 153 32 106 202 101 201
RF measurements 3GPP FDD Analysis Analysis (remote) Configuration Configuration (remote) MSRA	151 . 151, 153 32 106 202 101 201 32
RF measurements 3GPP FDD Analysis Analysis (remote) Configuration Configuration (remote)	151 . 151, 153 32 106 202 101 201 32 124

Results (remote)	
RF Combi	104
Selecting	101
Types	32
RF Power	
Trigger level (remote)	171
RF signal power	
RHO	13
RRC Filter	
RUN CONT	·
Key	
RUN SINGLE	
Key	

S

Sample rate	84
Configuring in channel table	07 03 05
Digital I/Q	
Digital I/Q (remote)	156 157
Scaling	150, 157
Amplitude range, automatically	76
Configuration actively	
Configuration, softkey Y-axis	
SCCPCH	
S-CPICH	
Antenna pattern	07
•	
Code number Synchronization mode	
Scrambling code	
Autosearch	
BTS	
BTS (remote)	
Measurement example	
Programming example	
Softkey	
UE	
Screen layout	
Select Marker	
Softkey	115
Select meas	
Softkey	
SEM	
3GPP FDD results	
Configuration (3GPP FDD)	
Measurement example	127
Programming example	
RF Combi	
Sequencer	9, 54
Aborting (remote)	
Activating (remote)	215
Mode (remote)	
Remote	214
Settings	
Overview	
Show inactive channels	17
Signal capturing	
Remote control	
Softkey	83
Signal description	
BTS (remote)	
BTS Configuration	
Configuration	
Remote control	
Softkey	
UE (remote)	
UE Configuration	63

Signal source	
Remote	153
Single sweep	
Softkey	
Single zoom	100
Slope	
Trigger	82, 172
Slots	42
Capture mode	84
Channel	42
CPICH	42
Evaluation	
Evaluation range	107
Number	
Power difference	110
Softkeys	
Amplitude Config	72
Auto All	
Auto Level	
Auto Scrambling Code	
Capture Offset	
Center	
Channel Detection	
Code Domain Settings	
Continue Single Sweep	
Continuous Sweep	
CPICH	
DiglConf	
Digital I/Q	80
Display Config	
Evaluation Range	
External	80
Free Run	
Frequency Config	
Input Source Config	
Lower Level Hysteresis	
Marker Config	
Meastime Auto	
Meastime Manual	99
Min	
Next Min	
Next Peak	
Norm/Delta	
Outputs Config	
PCCPCH	
Peak	
Preamp	75
Ref Level	
Ref Level Offset	
Refresh	
RF Atten Auto	
RF Atten Manual	
Scale Config	
Scrambling Code	
Select Marker	
Select Meas	
Signal Capture	
Signal Description	
Single Sweep	
Sweep Config	
Sweep count	
Synchronization	
Trace Config	
Trigger Config	
Trigger Offset	
Upper Level Hysteresis	

Span	
Menu	55
Specifics for	
Configuration	59
Spectrum Emission Mask	
see SEM	35
Spreading factor	
Relationship to code class	
Relationship to symbol rate	
SSCH	
Standard	
BTS (ACLR)	102
Status	
Channels	A 96
Display	,
Status registers	10
3GPP FDD	051
Contents	
STAT:QUES:POW	
STATus:QUEStionable:DIQ	158
Stimulus	
Marker	116
Suffixes	
Remote commands (3GPP FDD)	139
Sweep	
Aborting	96, 97
Configuration (remote)	
Configuration (softkey)	96
Count	97
Symbol Constellation	
Evaluation	27
Trace results	225
Symbol EVM	14
Evaluation	28
Trace results	226
Symbol Magnitude Error	
Evaluation	29
Trace results	
Symbol Phase Error	
Evaluation	29
Trace results	
Symbol rate	
Displayed	
Relationship to code class	40
Relationship to spreading factor	
Synchronization	40
Check (TAE)	21
Configuring	
Remote control	
Softkey	
Туре	00

Т

TAE	
Configuration (remote)	145
Configuring	55
Determining	124
Measurement	30
Results (remote control)	218
Tail chips	
Eliminating	112
Test models	
BTS	47
UE	50

BTS	
	49
UE	51
TFCI	
Channel detection	
Time Alignment Error	
see TAE	20
Timing offset	
Configuring	
Reference	89
T Offs	18
Traces	
Configuration (remote)	241
Configuration (softkey)	
Exporting (remote)	
,	
Mode	
Mode (remote)	
Results (remote)	228
Trigger	
Configuration (remote)	168
Configuration (softkey)	78
Drop-out time	
External (remote)	
Holdoff	
Hysteresis	
Level	
Measurement example	
Offset (softkey)	81
Output	~~ ~~
	69, 82
Programming example	
Programming example	261
Slope	261 82, 172
Slope to frame	261 82, 172
Slope to frame Trigger level	261 82, 172 13
Slope to frame Trigger level External trigger (remote)	261 82, 172 13
Slope to frame Trigger level External trigger (remote) I/Q Power (remote)	261 82, 172 13 170 171
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote)	261 82, 172 13 170 171 171
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote)	261 82, 172 13 170 171 171 171
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote)	261 82, 172 13 170 171 171 171
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote)	261 82, 172 13 170 171 171 171 79
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Trigger source Digital I/Q	261 82, 172 13 170 171 171 171 79 80
Slopeto frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Trigger source Digital I/Q External	
Slopeto frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Trigger source Digital I/Q External Free Run	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Trigger source Digital I/Q External Free Run Troubleshooting	261 82, 172 13 170 171 171 171 79 80 80 80
Slopeto frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Trigger source Digital I/Q External Free Run Troubleshooting Input overload	261 82, 172 13 170 171 171 171 79 80 80 80
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type	
Slopeto frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Trigger source Digital I/Q External Free Run Troubleshooting Input overload	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE)	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Trigger source Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE)	261 82, 172 13 170 171 171 171 79 80 80 80 151 64
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE) U UE (User equipment)	261 82, 172 13 170 171 171 171 79 80 80 80 151 64
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE) U UE (User equipment) Units	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE) U UE (User equipment)	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE) U UE (User equipment) Units Reference level	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE) U U UE (User equipment) Units Reference level Updating	
Slope to frame Trigger level External trigger (remote) I/Q Power (remote) IF Power (remote) RF Power (remote) Digital I/Q External Free Run Troubleshooting Input overload Type Scrambling codes (UE) U UE (User equipment) Units Reference level	

Adding (remote)204Closing (remote)207Configuring59

Layout (remote)	. 207
Maximizing (remote)	. 203
Querying (remote)	. 206
Replacing (remote)	. 207
Splitting (remote)	. 203
Types (remote)	. 204
Window title bar information	11

Υ

YIG-preselector	
Activating/Deactivating	66
Activating/Deactivating (remote)	152
Y-maximum, Y-minimum	
Scaling	

Ζ

Zooming	
Activating (remote)	211
Area (Multiple mode, remote)	211
Area (remote)	210
Deactivating	101
Multiple mode	100
Multiple mode (remote)	211, 212
Remote	210
Restoring original display	100
Single mode	100
Single mode (remote)	210

Upper Level Hysteresis

Use TFCI

Windows

W